Advertisement

Stem Cell Sources for Regenerative Medicine

  • Ali M. Riazi
  • Sarah Y. Kwon
  • William L. Stanford
Part of the Methods in Molecular Biology book series (MIMB, volume 482)

Abstract

Tissue-resident stem cells or primitive progenitors play an integral role in homeostasis of most organ systems. Recent developments in methodologies to isolate and culture embryonic and somatic stem cells have many new applications poised for clinical and preclinical trials, which will enable the potential of regenerative medicine to be realized. Here, we overview the current progress in therapeutic applications of various stem cells and discuss technical and social hurdles that must be overcome for their potential to be realized.

Key words

Stem cells cell therapy regeneration 

References

  1. 1.
    Price, J., Faucheux, C., and Allen, S. (2005) Deer antlers as a model of Mammalian regeneration. Currs Top Dev Biol 67, 1–48CrossRefGoogle Scholar
  2. 2.
    Klussmann, S., and Martin-Villalba, A. (2005) Molecular targets in spinal cord injury. J Mol Med 83, 657–671PubMedCrossRefGoogle Scholar
  3. 3.
    Sun, Y., and Weber, K. T. (2000) Infarct scar: a dynamic tissue. Cardiovasc Res 46, 250–256PubMedCrossRefGoogle Scholar
  4. 4.
    Brockes, J. P., and Kumar, A. (2005) Appendage regeneration in adult vertebrates and implications for regenerative medicine. Science NY 310, 1919–1923Google Scholar
  5. 5.
    Odelberg, S. J. (2004) Unraveling the molecular basis for regenerative cellular plasticity. PLoS Biol 2, E232PubMedCrossRefGoogle Scholar
  6. 6.
    Sanchez Alvarado, A., and Kang, H. (2005) Multicellularity, stem cells, and the neoblasts of the planarian Schmidtea mediterranea. Exp Cell Res 306, 299–308PubMedCrossRefGoogle Scholar
  7. 7.
    Poss, K. D., Keating, M. T., and Nechiporuk, A. (2003) Tales of regeneration in zebrafish. Dev Dyn 226, 202–210PubMedCrossRefGoogle Scholar
  8. 8.
    Morrison, J. I., Loof, S., He, P., and Simon, A. (2006) Salamander limb regeneration involves the activation of a multipotent skeletal muscle satellite cell population. J Cell Biol 172, 433–440PubMedCrossRefGoogle Scholar
  9. 9.
    McGann, C. J., Odelberg, S. J., and Keating, M. T. (2001) Mammalian myotube dedifferentiation induced by newt regeneration extract. Proc Natl Acad Sci USA 98, 13699–13704Google Scholar
  10. 10.
    Odelberg, S. J., Kollhoff, A., and Keating, M. T. (2000) Dedifferentiation of mammalian myotubes induced by msx1. Cell 103, 1099–1109PubMedCrossRefGoogle Scholar
  11. 11.
    Odelberg, S. J. (2005) Cellular plasticity in vertebrate regeneration. Anat Rec B New Anat 287, 25–35PubMedGoogle Scholar
  12. 12.
    Lien, C. L., Schebesta, M., Makino, S., Weber, G. J., and Keating, M. T. (2006) Gene Expression Analysis of Zebrafish Heart Regeneration. PLoS Biol 4, E260Google Scholar
  13. 13.
    Lee, Y., Grill, S., Sanchez, A., Murphy-Ryan, M., and Poss, K. D. (2005) Fgf signaling instructs position-dependent growth rate during zebrafish fin regeneration. Development 132, 5173–5183PubMedCrossRefGoogle Scholar
  14. 14.
    Beck, C. W., Christen, B., and Slack, J. M. (2003) Molecular pathways needed for regeneration of spinal cord and muscle in a vertebrate. Dev Cell 5, 429–439PubMedCrossRefGoogle Scholar
  15. 15.
    Vinarsky, V., Atkinson, D. L., Stevenson, T. J., Keating, M. T., and Odelberg, S. J. (2005) Normal newt limb regeneration requires matrix metalloproteinase function. Dev Biol 279, 86–98PubMedCrossRefGoogle Scholar
  16. 16.
    Leferovich, J. M., and Heber-Katz, E. (2002) The scarless heart. Semin Cell Dev Biol 13, 327–333PubMedCrossRefGoogle Scholar
  17. 17.
    Harty, M., Neff, A. W., King, M. W., and Mescher, A. L. (2003) Regeneration or scarring: an immunologic perspective. Dev Dyn 226, 268–279PubMedCrossRefGoogle Scholar
  18. 18.
    Li, X., Mohan, S., Gu, W., and Baylink, D. J. (2001) Analysis of gene expression in the wound repair/regeneration process. Mamm Genome 12, 52–59PubMedCrossRefGoogle Scholar
  19. 19.
    Bradley, A., Evans, M., Kaufman, M. H., and Robertson, E. (1984) Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309, 255–256PubMedCrossRefGoogle Scholar
  20. 20.
    Nagy, A., Rossant, J., Nagy, R., Abramow-Newerly, W., and Roder, J. C. (1993) Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc Natl Acad Sci USA 90, 8424–8428Google Scholar
  21. 21.
    Fraidenraich, D., Stillwell, E., Romero, E., Wilkes, D., Manova, K., Basson, C. T., and Benezra, R. (2004) Rescue of cardiac defects in id knockout embryos by injection of embryonic stem cells. Science NY 306, 247–252Google Scholar
  22. 22.
    Beddington, R. S., and Robertson, E. J. (1989) An assessment of the developmental potential of embryonic stem cells in the midgestation mouse embryo. Development 105, 733–737PubMedGoogle Scholar
  23. 23.
    Nichols, J., Evans, E. P., and Smith, A. G. (1990) Establishment of germ-line-competent embryonic stem (ES) cells using differentiation inhibiting activity. Development 110, 1341–1348PubMedGoogle Scholar
  24. 24.
    Takeda, K., Noguchi, K., Shi, W., Tanaka, T., Matsumoto, M., Yoshida, N., Kishimoto, T., and Akira, S. (1997) Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality. Proc Natl Acad Sci USA 94, 3801–3804Google Scholar
  25. 25.
    Ying, Q. L., Nichols, J., Chambers, I., and Smith, A. (2003) BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115, 281–292PubMedCrossRefGoogle Scholar
  26. 26.
    Xu, R. H., Peck, R. M., Li, D. S., Feng, X., Ludwig, T., and Thomson, J. A. (2005) Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nat Methods 2, 185–190PubMedCrossRefGoogle Scholar
  27. 27.
    Niwa, H., Miyazaki, J., and Smith, A. G. (2000) Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 24, 372–376PubMedCrossRefGoogle Scholar
  28. 28.
    Mitsui, K., Tokuzawa, Y., Itoh, H., Segawa, K., Murakami, M., Takahashi, K., Maruyama, M., Maeda, M., and Yamanaka, S. (2003) The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113, 631–642PubMedCrossRefGoogle Scholar
  29. 29.
    Chambers, I., Colby, D., Robertson, M., Nichols, J., Lee, S., Tweedie, S., and Smith, A. (2003) Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113, 643–655PubMedCrossRefGoogle Scholar
  30. 30.
    Avilion, A. A., Nicolis, S. K., Pevny, L. H., Perez, L., Vivian, N., and Lovell-Badge, R. (2003) Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev 17, 126–140PubMedCrossRefGoogle Scholar
  31. 31.
    Boyer, L. A., Lee, T. I., Cole, M. F., Johnstone, S. E., Levine, S. S., Zucker, J. P., Guenther, M. G., Kumar, R. M., Murray, H. L., Jenner, R. G., Gifford, D. K., Melton, D. A., Jaenisch, R., and Young, R. A. (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947–956PubMedCrossRefGoogle Scholar
  32. 32.
    Boiani, M., and Scholer, H. R. (2005) Regulatory networks in embryo-derived pluripotent stem cells. Nat Rev Mol Cell Biol 6, 872–884PubMedCrossRefGoogle Scholar
  33. 33.
    Okumura-Nakanishi, S., Saito, M., Niwa, H., and Ishikawa, F. (2005) Oct-3/4 and Sox2 regulate Oct-3/4 gene in embryonic stem cells. J Biol Chem 280, 5307–5317PubMedCrossRefGoogle Scholar
  34. 34.
    Orkin, S. H. (2005) Chipping away at the embryonic stem cell network. Cell 122, 828–830PubMedCrossRefGoogle Scholar
  35. 35.
    Kehat, I., Khimovich, L., Caspi, O., Gepstein, A., Shofti, R., Arbel, G., Huber, I., Satin, J., Itskovitz-Eldor, J., and Gepstein, L. (2004) Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat Biotechnol 22, 1282–1289PubMedCrossRefGoogle Scholar
  36. 36.
    He, J. Q., Ma, Y., Lee, Y., Thomson, J. A., and Kamp, T. J. (2003) Human embryonic stem cells develop into multiple types of cardiac myocytes: action potential characterization. Circ Res 93, 32–39PubMedCrossRefGoogle Scholar
  37. 37.
    Sinha, S., Wamhoff, B. R., Hoofnagle, M. H., Thomas, J., Neppl, R. L., Deering, T., Helmke, B. P., Bowles, D. K., Somlyo, A. V., and Owens, G. K. (2006) Assessment of contractility of purified smooth muscle cells derived from embryonic stem cells. Stem cells (Dayton, Ohio) 24, 1678–1688CrossRefGoogle Scholar
  38. 38.
    Chadwick, K., Wang, L., Li, L., Menendez, P., Murdoch, B., Rouleau, A., and Bhatia, M. (2003) Cytokines and BMP-4 promote hematopoietic differentiation of human embryonic stem cells. Blood 102, 906–915PubMedCrossRefGoogle Scholar
  39. 39.
    Olsen, A. L., Stachura, D. L., and Weiss, M. J. (2006) Designer blood: creating hematopoietic lineages from embryonic stem cells. Blood 107, 1265–1275PubMedCrossRefGoogle Scholar
  40. 40.
    Reubinoff, B. E., Itsykson, P., Turetsky, T., Pera, M. F., Reinhartz, E., Itzik, A., and Ben-Hur, T. (2001) Neural progenitors from human embryonic stem cells. Nat Biotechnol 19, 1134–1140PubMedCrossRefGoogle Scholar
  41. 41.
    Tabar, V., Panagiotakos, G., Greenberg, E. D., Chan, B. K., Sadelain, M., Gutin, P. H., and Studer, L. (2005) Migration and differentiation of neural precursors derived from human embryonic stem cells in the rat brain. Nat Biotechnol 23, 601–606PubMedCrossRefGoogle Scholar
  42. 42.
    Assady, S., Maor, G., Amit, M., Itskovitz-Eldor, J., Skorecki, K. L., and Tzukerman, M. (2001) Insulin production by human embryonic stem cells. Diabetes 50, 1691–1697PubMedCrossRefGoogle Scholar
  43. 43.
    Levenberg, S., Golub, J. S., Amit, M., Itskovitz-Eldor, J., and Langer, R. (2002) Endothelial cells derived from human embryonic stem cells. Proc Natl Acad Sci USA 99, 4391–4396Google Scholar
  44. 44.
    Bautch, V. L. (2002) Embryonic stem cell differentiation and the vascular lineage. Methods Mol Biol 185, 117–125PubMedGoogle Scholar
  45. 45.
    Sottile, V., Thomson, A., and McWhir, J. (2003) In vitro osteogenic differentiation of human ES cells. Cloning Stem Cells 5, 149–155PubMedCrossRefGoogle Scholar
  46. 46.
    Bielby, R. C., Boccaccini, A. R., Polak, J. M., and Buttery, L. D. (2004) In vitro differentiation and in vivo mineralization of osteogenic cells derived from human embryonic stem cells. Tissue Eng 10, 1518–1525PubMedGoogle Scholar
  47. 47.
    Shirahashi, H., Wu, J., Yamamoto, N., Catana, A., Wege, H., Wager, B., Okita, K., and Zern, M. A. (2004) Differentiation of human and mouse embryonic stem cells along a hepatocyte lineage. Cell Transplant 13, 197–211PubMedCrossRefGoogle Scholar
  48. 48.
    Lerou, P. H., and Daley, G. Q. (2005) Therapeutic potential of embryonic stem cells. Blood Rev 19, 321–331PubMedCrossRefGoogle Scholar
  49. 49.
    Vogel, G. (2005) Stem cells. Deriving 'controversy-free' ES cells is controversial. Science NY 310, 416–417Google Scholar
  50. 50.
    Daar, A. S., and Sheremeta, L. (2003) The science of stem cells: ethical, legal and social issues. Exp Clin Transplant 1, 139–146PubMedGoogle Scholar
  51. 51.
    Cowan, C. A., Klimanskaya, I., McMahon, J., Atienza, J., Witmyer, J., Zucker, J. P., Wang, S., Morton, C. C., McMahon, A. P., Powers, D., and Melton, D. A. (2004) Derivation of embryonic stem-cell lines from human blastocysts. N Engl J Med 350, 1353–1356PubMedCrossRefGoogle Scholar
  52. 52.
    Reicin, C., and McMahon, E. (2005) Stem cell research in Canada: business opportunities for U.S. companies. J Biolaw Bus 8, 61–64PubMedGoogle Scholar
  53. 53.
    Klimanskaya, I., Chung, Y., Becker, S., Lu, S. J., and Lanza, R. (2006) Human embryonic stem cell lines derived from single blastomeres. Nature 444, 481–485Google Scholar
  54. 54.
    Pearson, H. (2006) Early embryos can yield stem cells... and survive. Nature 442, 858PubMedCrossRefGoogle Scholar
  55. 55.
    Trounson, A. O. (2001) The derivation and potential use of human embryonic stem cells. Reprod Fertil Dev 13, 523–532PubMedCrossRefGoogle Scholar
  56. 56.
    Snodgrass, H. R., Graham, D. K., Stanford, W. L., and Licato, L. L. (1993) Embryonic stem cells: research and clinical potentials. In Peripheral Blood Stem Cells (Smith, D. M., Sacher, R. A., and Jefferies, L. C., eds.), American Association of Blood Banks, Bethesda, MD, pp. 65–83Google Scholar
  57. 57.
    Taylor, C. J., Bolton, E. M., Pocock, S., Sharples, L. D., Pedersen, R. A., and Bradley, J. A. (2005) Banking on human embryonic stem cells: estimating the number of donor cell lines needed for HLA matching. Lancet 366, 2019–2025PubMedCrossRefGoogle Scholar
  58. 58.
    Fujikawa, T., Oh, S. H., Pi, L., Hatch, H. M., Shupe, T., and Petersen, B. E. (2005) Teratoma formation leads to failure of treatment for type I diabetes using embryonic stem cell-derived insulin-producing cells. Am J Pathol 166, 1781–1791PubMedGoogle Scholar
  59. 59.
    Przyborski, S. A. (2005) Differentiation of human embryonic stem cells after transplantation in immune-deficient mice. Stem cells (Dayton, Ohio) 23, 1242–1250CrossRefGoogle Scholar
  60. 60.
    Temple, S. (2001) The development of neural stem cells. Nature 414, 112–117PubMedCrossRefGoogle Scholar
  61. 61.
    Gage, F. H. (2000) Mammalian neural stem cells. Science NY 287, 1433–1438Google Scholar
  62. 62.
    Nyfeler, Y., Kirch, R. D., Mantei, N., Leone, D. P., Radtke, F., Suter, U., and Taylor, V. (2005) Jagged1 signals in the postnatal subventricular zone are required for neural stem cell self-renewal. Embo J 24, 3504–3515PubMedCrossRefGoogle Scholar
  63. 63.
    Toma, J. G., Akhavan, M., Fernandes, K. J., Barnabe-Heider, F., Sadikot, A., Kaplan, D. R., and Miller, F. D. (2001) Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol 3, 778–784PubMedCrossRefGoogle Scholar
  64. 64.
    Tumbar, T., Guasch, G., Greco, V., Blanpain, C., Lowry, W. E., Rendl, M., and Fuchs, E. (2004) Defining the epithelial stem cell niche in skin. Science NY 303, 359–363Google Scholar
  65. 65.
    Germain, L., Auger, F. A., Grandbois, E., Guignard, R., Giasson, M., Boisjoly, H., and Guerin, S. L. (1999) Reconstructed human cornea produced in vitro by tissue engineering. Pathobiology 67, 140–147PubMedCrossRefGoogle Scholar
  66. 66.
    Shi, X., and Garry, D. J. (2006) Muscle stem cells in development, regeneration, and disease. Genes Dev 20, 1692–1708PubMedCrossRefGoogle Scholar
  67. 67.
    Mauro, A. (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9, 493–495PubMedCrossRefGoogle Scholar
  68. 68.
    Bryder, D., Rossi, D. J., and Weissman, I. L. (2006) Hematopoietic stem cells: the paradigmatic tissue-specific stem cell. Am J Pathol 169, 338–346PubMedCrossRefGoogle Scholar
  69. 69.
    Spangrude, G. J., Heimfeld, S., and Weissman, I. L. (1988) Purification and characterization of mouse hematopoietic stem cells. Science NY 241, 58–62Google Scholar
  70. 70.
    Jiang, Y., Jahagirdar, B. N., Reinhardt, R. L., Schwartz, R. E., Keene, C. D., Ortiz-Gonzalez, X. R., Reyes, M., Lenvik, T., Lund, T., Blackstad, M., Du, J., Aldrich, S., Lisberg, A., Low, W. C., Largaespada, D. A., and Verfaillie, C. M. (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418, 41–49PubMedCrossRefGoogle Scholar
  71. 71.
    Owen, M., and Friedenstein, A. J. (1988) Stromal stem cells: marrow-derived osteogenic precursors. Ciba Found Symp 136, 42–60PubMedGoogle Scholar
  72. 72.
    Dzau, V. J., Gnecchi, M., and Pachori, A. S. (2005) Enhancing stem cell therapy through genetic modification. J Am Coll Cardiol 46, 1351–1353PubMedCrossRefGoogle Scholar
  73. 73.
    Oh, S. H., Hatch, H. M., and Petersen, B. E. (2002) Hepatic oval 'stem' cell in liver regeneration. Semin Cell Dev Biol 13, 405–409PubMedCrossRefGoogle Scholar
  74. 74.
    Herrera, M. B., Bruno, S., Buttiglieri, S., Tetta, C., Gatti, S., Deregibus, M. C., Bussolati, B., and Camussi, G. (2006) Isolation and characterization of a stem cell population from adult human liver. Stem cells (Dayton, Ohio) 24, 2840–2850CrossRefGoogle Scholar
  75. 75.
    Horwitz, E. M., Gordon, P. L., Koo, W. K., Marx, J. C., Neel, M. D., McNall, R. Y., Muul, L., and Hofmann, T. (2002) Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. Proceedings of the National Academy of Sciences of the United States of America 99, 8932–8937Google Scholar
  76. 76.
    Briggs, R., and King, T. J. (1952) Transplantation of Living Nuclei From Blastula Cells into Enucleated Frogs' Eggs. Proc Natl Acad Sci USA 38, 455–463Google Scholar
  77. 77.
    Gurdon, J. B. (1962) The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J Embryol Exp Morphol 10, 622–640PubMedGoogle Scholar
  78. 78.
    Gurdon, J. B. (2006) From Nuclear Transfer to Nuclear Reprogramming: The Reversal of Cell Differentiation. Annu Rev Cell Dev Biol 22, 1–22Google Scholar
  79. 79.
    Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J., and Campbell, K. H. (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810–813PubMedCrossRefGoogle Scholar
  80. 80.
    Jouneau, A., Zhou, Q., Camus, A., Brochard, V., Maulny, L., Collignon, J., and Renard, J. P. (2006) Developmental abnormalities of NT mouse embryos appear early after implantation. Development 133, 1597–1607PubMedCrossRefGoogle Scholar
  81. 81.
    Hochedlinger, K., and Jaenisch, R. (2006) Nuclear reprogramming and pluripotency. Nature 441, 1061–1067PubMedCrossRefGoogle Scholar
  82. 82.
    Meissner, A., and Jaenisch, R. (2006) Mammalian nuclear transfer. Dev Dyn 235, 2460–2469PubMedCrossRefGoogle Scholar
  83. 83.
    Rideout, W. M., 3rd, Hochedlinger, K., Kyba, M., Daley, G. Q., and Jaenisch, R. (2002) Correction of a genetic defect by nuclear transplantation and combined cell and gene therapy. Cell 109, 17–27PubMedCrossRefGoogle Scholar
  84. 84.
    Kennedy, D. (2006) Editorial retraction. Science (New York, N.Y 311, 335Google Scholar
  85. 85.
    Egli, D., Rosains, J., Birkhoff, G., and Eggan, K. (2007) Developmental reprogramming after chromosome transfer into mitotic mouse zygotes. Nature 447, 679–685PubMedCrossRefGoogle Scholar
  86. 86.
    Chen, Y., He, Z. X., Liu, A., Wang, K., Mao, W. W., Chu, J. X., Lu, Y., Fang, Z. F., Shi, Y. T., Yang, Q. Z., Chen da, Y., Wang, M. K., Li, J. S., Huang, S. L., Kong, X. Y., Shi, Y. Z., Wang, Z. Q., Xia, J. H., Long, Z. G., Xue, Z. G., Ding, W. X., and Sheng, H. Z. (2003) Embryonic stem cells generated by nuclear transfer of human somatic nuclei into rabbit oocytes. Cell Res 13, 251–263PubMedCrossRefGoogle Scholar
  87. 87.
    Tada, M., Morizane, A., Kimura, H., Kawasaki, H., Ainscough, J. F., Sasai, Y., Nakatsuji, N., and Tada, T. (2003) Pluripotency of reprogrammed somatic genomes in embryonic stem hybrid cells. Dev Dyn 227, 504–510PubMedCrossRefGoogle Scholar
  88. 88.
    Strelchenko, N., Kukharenko, V., Shkumatov, A., Verlinsky, O., Kuliev, A., and Verlinsky, Y. (2006) Reprogramming of human somatic cells by embryonic stem cell cytoplast. Reprod Biomed Online 12, 107–111PubMedCrossRefGoogle Scholar
  89. 89.
    Cowan, C. A., Atienza, J., Melton, D. A., and Eggan, K. (2005) Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science NY 309, 1369–1373Google Scholar
  90. 90.
    Taranger, C. K., Noer, A., Sorensen, A. L., Hakelien, A. M., Boquest, A. C., and Collas, P. (2005) Induction of dedifferentiation, genomewide transcriptional programming, and epigenetic reprogramming by extracts of carcinoma and embryonic stem cells. Mol Biol Cell 16, 5719–5735PubMedCrossRefGoogle Scholar
  91. 91.
    Takahashi, K., and Yamanaka, S. (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676PubMedCrossRefGoogle Scholar
  92. 92.
    Blelloch, R., Wang, Z., Meissner, A., Pollard, S., Smith, A., and Jaenisch, R. (2006) Reprogramming efficiency following somatic cell nuclear transfer is influenced by the differentiation and methylation state of the donor nucleus. Stem cells (Dayton, Ohio) 24, 2007–2013CrossRefGoogle Scholar
  93. 93.
    Czermin, B., and Imhof, A. (2003) The sounds of silence--histone deacetylation meets histone methylation. Genetica 117, 159–164PubMedCrossRefGoogle Scholar
  94. 94.
    Jaenisch, R. (1997) DNA methylation and imprinting: why bother? Trends Genet 13, 323–329PubMedCrossRefGoogle Scholar
  95. 95.
    Armstrong, L., Lako, M., Dean, W., and Stojkovic, M. (2006) Epigenetic modification is central to genome reprogramming in somatic cell nuclear transfer. Stem cells (Dayton, Ohio) 24, 805–814CrossRefGoogle Scholar
  96. 96.
    Boyer, L. A., Plath, K., Zeitlinger, J., Brambrink, T., Medeiros, L. A., Lee, T. I., Levine, S. S., Wernig, M., Tajonar, A., Ray, M. K., Bell, G. W., Otte, A. P., Vidal, M., Gifford, D. K., Young, R. A., and Jaenisch, R. (2006) Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441, 349–353PubMedCrossRefGoogle Scholar
  97. 97.
    Papp, B., and Muller, J. (2006) Histone trimethylation and the maintenance of transcriptional ON and OFF states by trxG and PcG proteins. Genes Dev 20, 2041–2054PubMedCrossRefGoogle Scholar
  98. 98.
    Muller-Ehmsen, J., Krausgrill, B., Burst, V., Schenk, K., Neisen, U. C., Fries, J. W., Fleischmann, B. K., Hescheler, J., and Schwinger, R. H. (2006) Effective engraftment but poor mid-term persistence of mononuclear and mesenchymal bone marrow cells in acute and chronic rat myocardial infarction. J Mol Cell Cardiol 41, 876–884Google Scholar
  99. 99.
    Moore, M. A., and Metcalf, D. (1970) Ontogeny of the haemopoietic system: yolk sac origin of in vivo and in vitro colony forming cells in the developing mouse embryo. Br J Haematol 18, 279–296PubMedCrossRefGoogle Scholar
  100. 100.
    Tavian, M., and Peault, B. (2005) Embryonic development of the human hematopoietic system. Int J Dev Biol 49, 243–250PubMedCrossRefGoogle Scholar
  101. 101.
    Haar, J. L., and Ackerman, G. A. (1971) A phase and electron microscopic study of vasculogenesis and erythropoiesis in the yolk sac of the mouse. Anat Rec 170, 199–223PubMedCrossRefGoogle Scholar
  102. 102.
    Huber, T. L., Kouskoff, V., Fehling, H. J., Palis, J., and Keller, G. (2004) Haemangioblast commitment is initiated in the primitive streak of the mouse embryo. Nature 432, 625–630PubMedCrossRefGoogle Scholar
  103. 103.
    Shalaby, F., Ho, J., Stanford, W. L., Fischer, K. D., Schuh, A. C., Schwartz, L., Bernstein, A., and Rossant, J. (1997) A requirement for Flk1 in primitive and definitive hematopoiesis and vasculogenesis. Cell 89, 981–990PubMedCrossRefGoogle Scholar
  104. 104.
    Zambidis, E. T., Oberlin, E., Tavian, M., and Peault, B. (2006) Blood-forming endothelium in human ontogeny: lessons from in utero development and embryonic stem cell culture. Trends Cardiovasc Med 16, 95–101PubMedCrossRefGoogle Scholar
  105. 105.
    Harrison, D. E. (1980) Competitive repopulation: a new assay for long-term stem cell functional capacity. Blood 55, 77–81PubMedGoogle Scholar
  106. 106.
    Larochelle, A., Vormoor, J., Hanenberg, H., Wang, J. C., Bhatia, M., Lapidot, T., Moritz, T., Murdoch, B., Xiao, X. L., Kato, I., Williams, D. A., and Dick, J. E. (1996) Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: implications for gene therapy. Nat med 2, 1329–1337PubMedCrossRefGoogle Scholar
  107. 107.
    Weissman, I. L. (2000) Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science NY 287, 1442–1446Google Scholar
  108. 108.
    Brown, J. M., and Weissman, I. L. (2004) Progress and prospects in hematopoietic stem cell expansion and transplantation. Exp hematol 32, 693–695PubMedCrossRefGoogle Scholar
  109. 109.
    Gluckman, E., Broxmeyer, H. A., Auerbach, A. D., Friedman, H. S., Douglas, G. W., Devergie, A., Esperou, H., Thierry, D., Socie, G., Lehn, P., and et al. (1989) Hematopoietic reconstitution in a patient with Fanconi's anemia by means of umbilical-cord blood from an HLA-identical sibling. N Engl J Med 321, 1174–1178PubMedCrossRefGoogle Scholar
  110. 110.
    Kurtzberg, J., Laughlin, M., Graham, M. L., Smith, C., Olson, J. F., Halperin, E. C., Ciocci, G., Carrier, C., Stevens, C. E., and Rubinstein, P. (1996) Placental blood as a source of hematopoietic stem cells for transplantation into unrelated recipients. N Engl J Med 335, 157–166PubMedCrossRefGoogle Scholar
  111. 111.
    Wagner, J. E., Kernan, N. A., Steinbuch, M., Broxmeyer, H. E., and Gluckman, E. (1995) Allogeneic sibling umbilical-cord-blood transplantation in children with malignant and non-malignant disease. Lancet 346, 214–219PubMedCrossRefGoogle Scholar
  112. 112.
    Brunstein, C. G., and Wagner, J. E. (2006) Umbilical cord blood transplantation and banking. Annu Rev Med 57, 403–417PubMedCrossRefGoogle Scholar
  113. 113.
    Gluckman, E., Rocha, V., Boyer-Chammard, A., Locatelli, F., Arcese, W., Pasquini, R., Ortega, J., Souillet, G., Ferreira, E., Laporte, J. P., Fernandez, M., and Chastang, C. (1997) Outcome of cord-blood transplantation from related and unrelated donors. Eurocord Transplant Group and the European Blood and Marrow Transplantation Group. N Engl J Med 337, 373–381PubMedCrossRefGoogle Scholar
  114. 114.
    Rubinstein, P., Carrier, C., Scaradavou, A., Kurtzberg, J., Adamson, J., Migliaccio, A. R., Berkowitz, R. L., Cabbad, M., Dobrila, N. L., Taylor, P. E., Rosenfield, R. E., and Stevens, C. E. (1998) Outcomes among 562 recipients of placental-blood transplants from unrelated donors. N Engl J Med 339, 1565–1577PubMedCrossRefGoogle Scholar
  115. 115.
    Gluckman, E., Rocha, V., and Chevret, S. (2001) Results of unrelated umbilical cord blood hematopoietic stem cell transplant. Transfus Clin Biol 8, 146–154PubMedCrossRefGoogle Scholar
  116. 116.
    Bornstein, R., Flores, A. I., Montalban, M. A., del Rey, M. J., de la Serna, J., and Gilsanz, F. (2005) A modified cord blood collection method achieves sufficient cell levels for transplantation in most adult patients. Stem cells (Dayton, Ohio) 23, 324–334CrossRefGoogle Scholar
  117. 117.
    Audet, J., Miller, C. L., Eaves, C. J., and Piret, J. M. (2002) Common and distinct features of cytokine effects on hematopoietic stem and progenitor cells revealed by dose-response surface analysis. Biotechnol bioeng 80, 393–404PubMedCrossRefGoogle Scholar
  118. 118.
    Audet, J., Miller, C. L., Rose-John, S., Piret, J. M., and Eaves, C. J. (2001) Distinct role of gp130 activation in promoting self-renewal divisions by mitogenically stimulated murine hematopoietic stem cells. Proc Natl Acad Sci USA 98, 1757–1762Google Scholar
  119. 119.
    Krosl, J., Austin, P., Beslu, N., Kroon, E., Humphries, R. K., and Sauvageau, G. (2003) In vitro expansion of hematopoietic stem cells by recombinant TAT-HOXB4 protein. Nat med 9, 1428–1432PubMedCrossRefGoogle Scholar
  120. 120.
    Antonchuk, J., Sauvageau, G., and Humphries, R. K. (2002) HOXB4-induced expansion of adult hematopoietic stem cells ex vivo. Cell 109, 39–45PubMedCrossRefGoogle Scholar
  121. 121.
    Madlambayan, G. J., Rogers, I., Kirouac, D. C., Yamanaka, N., Mazurier, F., Doedens, M., Casper, R. F., Dick, J. E., and Zandstra, P. W. (2005) Dynamic changes in cellular and microenvironmental composition can be controlled to elicit in vitro human hematopoietic stem cell expansion. Exp hematol 33, 1229–1239PubMedCrossRefGoogle Scholar
  122. 122.
    Madlambayan, G. J., Rogers, I., Purpura, K. A., Ito, C., Yu, M., Kirouac, D., Casper, R. F., and Zandstra, P. W. (2006) Clinically relevant expansion of hematopoietic stem cells with conserved function in a single-use, closed-system bioprocess. Biol Blood Marrow Transplant 12, 1020–1030PubMedCrossRefGoogle Scholar
  123. 123.
    Tian, X., Morris, J. K., Linehan, J. L., and Kaufman, D. S. (2004) Cytokine requirements differ for stroma and embryoid body-mediated hematopoiesis from human embryonic stem cells. Exp hematol 32, 1000–1009PubMedCrossRefGoogle Scholar
  124. 124.
    Keller, G., Kennedy, M., Papayannopoulou, T., and Wiles, M. V. (1993) Hematopoietic commitment during embryonic stem cell differentiation in culture. Mol Cell Biol 13, 473–486PubMedGoogle Scholar
  125. 125.
    Choi, K., Kennedy, M., Kazarov, A., Papadimitriou, J. C., and Keller, G. (1998) A common precursor for hematopoietic and endothelial cells. Development 125, 725–732PubMedGoogle Scholar
  126. 126.
    Kyba, M., Perlingeiro, R. C., and Daley, G. Q. (2002) HoxB4 confers definitive lymphoid-myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors. Cell 109, 29–37PubMedCrossRefGoogle Scholar
  127. 127.
    Kyba, M., Perlingeiro, R. C., Hoover, R. R., Lu, C. W., Pierce, J., and Daley, G. Q. (2003) Enhanced hematopoietic differentiation of embryonic stem cells conditionally expressing Stat5. Proc Natl Acad Sci USA 100 Suppl 1, 11904–11910Google Scholar
  128. 128.
    Wang, Y., Yates, F., Naveiras, O., Ernst, P., and Daley, G. Q. (2005) Embryonic stem cell-derived hematopoietic stem cells. Proc Natl Acad Sci USA 102, 19081–19086Google Scholar
  129. 129.
    Wang, L., Menendez, P., Shojaei, F., Li, L., Mazurier, F., Dick, J. E., Cerdan, C., Levac, K., and Bhatia, M. (2005) Generation of hematopoietic repopulating cells from human embryonic stem cells independent of ectopic HOXB4 expression. J Exp Med 201, 1603–1614PubMedCrossRefGoogle Scholar
  130. 130.
    Lindvall, O., Kokaia, Z., and Martinez-Serrano, A. (2004) Stem cell therapy for human neurodegenerative disorders-how to make it work. Nat med 10 Suppl, S42–50PubMedCrossRefGoogle Scholar
  131. 131.
    Martino, G., and Pluchino, S. (2006) The therapeutic potential of neural stem cells. Nat Rev Neurosci 7, 395–406PubMedCrossRefGoogle Scholar
  132. 132.
    Piccini, P., Brooks, D. J., Bjorklund, A., Gunn, R. N., Grasby, P. M., Rimoldi, O., Brundin, P., Hagell, P., Rehncrona, S., Widner, H., and Lindvall, O. (1999) Dopamine release from nigral transplants visualized in vivo in a Parkinson's patient. Nat Neurosci 2, 1137–1140PubMedCrossRefGoogle Scholar
  133. 133.
    Piccini, P., Lindvall, O., Bjorklund, A., Brundin, P., Hagell, P., Ceravolo, R., Oertel, W., Quinn, N., Samuel, M., Rehncrona, S., Widner, H., and Brooks, D. J. (2000) Delayed recovery of movement-related cortical function in Parkinson's disease after striatal dopaminergic grafts. Ann Neurol 48, 689–695PubMedCrossRefGoogle Scholar
  134. 134.
    Reynolds, B. A., and Rietze, R. L. (2005) Neural stem cells and neurospheres--re-evaluating the relationship. Nat Methods 2, 333–336PubMedCrossRefGoogle Scholar
  135. 135.
    Uchida, N., Buck, D. W., He, D., Reitsma, M. J., Masek, M., Phan, T. V., Tsukamoto, A. S., Gage, F. H., and Weissman, I. L. (2000) Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci USA 97, 14720–14725Google Scholar
  136. 136.
    Palmer, T. D., Schwartz, P. H., Taupin, P., Kaspar, B., Stein, S. A., and Gage, F. H. (2001) Cell culture. Progenitor cells from human brain after death. Nature 411, 42–43PubMedCrossRefGoogle Scholar
  137. 137.
    Tropepe, V., Hitoshi, S., Sirard, C., Mak, T. W., Rossant, J., and van der Kooy, D. (2001) Direct neural fate specification from embryonic stem cells: a primitive mammalian neural stem cell stage acquired through a default mechanism. Neuron 30, 65–78PubMedCrossRefGoogle Scholar
  138. 138.
    Li, X. J., and Zhang, S. C. (2006) In vitro differentiation of neural precursors from human embryonic stem cells. Methods Mol Biol 331, 169–177PubMedGoogle Scholar
  139. 139.
    Doetsch, F. (2003) A niche for adult neural stem cells. Curr Opin Genet Dev 13, 543–550PubMedCrossRefGoogle Scholar
  140. 140.
    Svendsen, C. N., Caldwell, M. A., Shen, J., ter Borg, M. G., Rosser, A. E., Tyers, P., Karmiol, S., and Dunnett, S. B. (1997) Long-term survival of human central nervous system progenitor cells transplanted into a rat model of Parkinson's disease. Exp Neurol 148, 135–146PubMedCrossRefGoogle Scholar
  141. 141.
    Wu, S., Suzuki, Y., Kitada, M., Kitaura, M., Kataoka, K., Takahashi, J., Ide, C., and Nishimura, Y. (2001) Migration, integration, and differentiation of hippocampus-derived neurosphere cells after transplantation into injured rat spinal cord. Neurosci Lett 312, 173–176PubMedCrossRefGoogle Scholar
  142. 142.
    Vroemen, M., Aigner, L., Winkler, J., and Weidner, N. (2003) Adult neural progenitor cell grafts survive after acute spinal cord injury and integrate along axonal pathways. Eur J Neurosci 18, 743–751PubMedCrossRefGoogle Scholar
  143. 143.
    Cummings, B. J., Uchida, N., Tamaki, S. J., Salazar, D. L., Hooshmand, M., Summers, R., Gage, F. H., and Anderson, A. J. (2005) Human neural stem cells differentiate and promote locomotor recovery in spinal cord-injured mice. Proc Natl Acad Sci USA 102, 14069–14074Google Scholar
  144. 144.
    Fernandes, K. J., McKenzie, I. A., Mill, P., Smith, K. M., Akhavan, M., Barnabe-Heider, F., Biernaskie, J., Junek, A., Kobayashi, N. R., Toma, J. G., Kaplan, D. R., Labosky, P. A., Rafuse, V., Hui, C. C., and Miller, F. D. (2004) A dermal niche for multipotent adult skin-derived precursor cells. Nat Cell Biol 6, 1082–1093PubMedCrossRefGoogle Scholar
  145. 145.
    McKenzie, I. A., Biernaskie, J., Toma, J. G., Midha, R., and Miller, F. D. (2006) Skin-derived precursors generate myelinating Schwann cells for the injured and dysmyelinated nervous system. J Neurosci 26, 6651–6660PubMedCrossRefGoogle Scholar
  146. 146.
    Kopen, G. C., Prockop, D. J., and Phinney, D. G. (1999) Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci USA 96, 10711–10716Google Scholar
  147. 147.
    Sanchez-Ramos, J., Song, S., Cardozo-Pelaez, F., Hazzi, C., Stedeford, T., Willing, A., Freeman, T. B., Saporta, S., Janssen, W., Patel, N., Cooper, D. R., and Sanberg, P. R. (2000) Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol 164, 247–256PubMedCrossRefGoogle Scholar
  148. 148.
    Habich, A., Jurga, M., Markiewicz, I., Lukomska, B., Bany-Laszewicz, U., and Domanska-Janik, K. (2006) Early appearance of stem/progenitor cells with neural-like characteristics in human cord blood mononuclear fraction cultured in vitro. Exp hematol 34, 914–925PubMedCrossRefGoogle Scholar
  149. 149.
    El-Badri, N. S., Hakki, A., Saporta, S., Liang, X., Madhusodanan, S., Willing, A. E., Sanberg, C. D., and Sanberg, P. R. (2006) Cord blood mesenchymal stem cells: Potential use in neurological disorders. Stem Cells Dev 15, 497–506PubMedCrossRefGoogle Scholar
  150. 150.
    Park, H. C., Shim, Y. S., Ha, Y., Yoon, S. H., Park, S. R., Choi, B. H., and Park, H. S. (2005) Treatment of complete spinal cord injury patients by autologous bone marrow cell transplantation and administration of granulocyte-macrophage colony stimulating factor. Tissue Eng 11, 913–922PubMedCrossRefGoogle Scholar
  151. 151.
    Mazzini, L., Mareschi, K., Ferrero, I., Vassallo, E., Oliveri, G., Boccaletti, R., Testa, L., Livigni, S., and Fagioli, F. (2006) Autologous mesenchymal stem cells: clinical applications in amyotrophic lateral sclerosis. Neurol Res 28, 523–526PubMedCrossRefGoogle Scholar
  152. 152.
    Vendrame, M., Cassady, J., Newcomb, J., Butler, T., Pennypacker, K. R., Zigova, T., Sanberg, C. D., Sanberg, P. R., and Willing, A. E. (2004) Infusion of human umbilical cord blood cells in a rat model of stroke dose-dependently rescues behavioral deficits and reduces infarct volume. Stroke 35, 2390–2395PubMedCrossRefGoogle Scholar
  153. 153.
    Bain, G., Kitchens, D., Yao, M., Huettner, J. E., and Gottlieb, D. I. (1995) Embryonic stem cells express neuronal properties in vitro. Dev Biol 168, 342–357PubMedCrossRefGoogle Scholar
  154. 154.
    Okabe, S., Forsberg-Nilsson, K., Spiro, A. C., Segal, M., and McKay, R. D. (1996) Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro. Mech Dev 59, 89–102PubMedCrossRefGoogle Scholar
  155. 155.
    Lee, S. H., Lumelsky, N., Studer, L., Auerbach, J. M., and McKay, R. D. (2000) Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat Biotechnol 18, 675–679PubMedCrossRefGoogle Scholar
  156. 156.
    Schmandt, T., Meents, E., Gossrau, G., Gornik, V., Okabe, S., and Brustle, O. (2005) High-purity lineage selection of embryonic stem cell-derived neurons. Stem Cells Dev 14, 55–64PubMedCrossRefGoogle Scholar
  157. 157.
    Glaser, T., Perez-Bouza, A., Klein, K., and Brustle, O. (2005) Generation of purified oligodendrocyte progenitors from embryonic stem cells. Faseb J 19, 112–114PubMedGoogle Scholar
  158. 158.
    Glass, R., Synowitz, M., Kronenberg, G., Walzlein, J. H., Markovic, D. S., Wang, L. P., Gast, D., Kiwit, J., Kempermann, G., and Kettenmann, H. (2005) Glioblastoma-induced attraction of endogenous neural precursor cells is associated with improved survival. J Neurosci 25, 2637–2646PubMedCrossRefGoogle Scholar
  159. 159.
    Chi, L., Ke, Y., Luo, C., Li, B., Gozal, D., Kalyanaraman, B., and Liu, R. (2006) Motor neuron degeneration promotes neural progenitor cell proliferation, migration, and neurogenesis in the spinal cords of amyotrophic lateral sclerosis mice. Stem cells (Dayton, Ohio) 24, 34–43CrossRefGoogle Scholar
  160. 160.
    Muller, F. J., Snyder, E. Y., and Loring, J. F. (2006) Gene therapy: can neural stem cells deliver? Nat Rev Neurosci 7, 75–84PubMedCrossRefGoogle Scholar
  161. 161.
    Buckingham, M., Bajard, L., Chang, T., Daubas, P., Hadchouel, J., Meilhac, S., Montarras, D., Rocancourt, D., and Relaix, F. (2003) The formation of skeletal muscle: from somite to limb. J Anat 202, 59–68PubMedCrossRefGoogle Scholar
  162. 162.
    Buckingham, M. (2001) Skeletal muscle formation in vertebrates. Curr Opin Genet Dev 11, 440–448PubMedCrossRefGoogle Scholar
  163. 163.
    Asakura, A. (2003) Stem cells in adult skeletal muscle. Trends Cardiovasc Med 13, 123–128PubMedCrossRefGoogle Scholar
  164. 164.
    Seale, P., and Rudnicki, M. A. (2000) A new look at the origin, function, and "stem-cell" status of muscle satellite cells. Dev Biol 218, 115–124PubMedCrossRefGoogle Scholar
  165. 165.
    Holterman, C. E., and Rudnicki, M. A. (2005) Molecular regulation of satellite cell function. Semin Cell Dev Biol 16, 575–584PubMedCrossRefGoogle Scholar
  166. 166.
    Seale, P., Sabourin, L. A., Girgis-Gabardo, A., Mansouri, A., Gruss, P., and Rudnicki, M. A. (2000) Pax7 is required for the specification of myogenic satellite cells. Cell 102, 777–786PubMedCrossRefGoogle Scholar
  167. 167.
    Shinin, V., Gayraud-Morel, B., Gomes, D., and Tajbakhsh, S. (2006) Asymmetric division and cosegregation of template DNA strands in adult muscle satellite cells. Nat Cell Biol 8, 677–687PubMedCrossRefGoogle Scholar
  168. 168.
    Gussoni, E., Soneoka, Y., Strickland, C. D., Buzney, E. A., Khan, M. K., Flint, A. F., Kunkel, L. M., and Mulligan, R. C. (1999) Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401, 390–394PubMedGoogle Scholar
  169. 169.
    Asakura, A., and Rudnicki, M. A. (2002) Side population cells from diverse adult tissues are capable of in vitro hematopoietic differentiation. Exp hematol 30, 1339–1345PubMedCrossRefGoogle Scholar
  170. 170.
    Qu-Petersen, Z., Deasy, B., Jankowski, R., Ikezawa, M., Cummins, J., Pruchnic, R., Mytinger, J., Cao, B., Gates, C., Wernig, A., and Huard, J. (2002) Identification of a novel population of muscle stem cells in mice: potential for muscle regeneration. J Cell Biol 157, 851–864PubMedCrossRefGoogle Scholar
  171. 171.
    Komori, T. (2006) Regulation of osteoblast differentiation by transcription factors. J Cell Biochem 99, 1233–1239PubMedCrossRefGoogle Scholar
  172. 172.
    Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., Moorman, M. A., Simonetti, D. W., Craig, S., and Marshak, D. R. (1999) Multilineage potential of adult human mesenchymal stem cells. Science NY 284, 143–147Google Scholar
  173. 173.
    Horwitz, E. M., Le Blanc, K., Dominici, M., Mueller, I., Slaper-Cortenbach, I., Marini, F. C., Deans, R. J., Krause, D. S., and Keating, A. (2005) Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy 7, 393–395PubMedCrossRefGoogle Scholar
  174. 174.
    Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D., and Horwitz, E. (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8, 315–317PubMedCrossRefGoogle Scholar
  175. 175.
    Krampera, M., Pizzolo, G., Aprili, G., and Franchini, M. (2006) Mesenchymal stem cells for bone, cartilage, tendon and skeletal muscle repair. Bone 39, 678–683PubMedCrossRefGoogle Scholar
  176. 176.
    Gang, E. J., Bosnakovski, D., Figueiredo, C. A., Visser, J. W., and Perlingeiro, R. C. (2006) SSEA-4 identifies mesenchymal stem cells from bone marrow. Blood 109, 1743–1751Google Scholar
  177. 177.
    Bonyadi, M., Waldman, S. D., Liu, D., Aubin, J. E., Grynpas, M. D., and Stanford, W. L. (2003) Mesenchymal progenitor self-renewal deficiency leads to age-dependent osteoporosis in Sca-1/Ly-6A null mice. Proc Natl Acad Sci USA 100, 5840–5845Google Scholar
  178. 178.
    Holmes, C., Khan, T. S., Owen, C., Ciliberti, N., Grynpas, M. D., and Stanford, W. L. (2007) Longitudinal Analysis of Mesenchymal Progenitors and Bone Quality in the Stem Cell Antigen-1 Null Osteoporotic Mouse. J Bone Miner Res 22, 1373–1386Google Scholar
  179. 179.
    Lee, R. H., Kim, B., Choi, I., Kim, H., Choi, H. S., Suh, K., Bae, Y. C., and Jung, J. S. (2004) Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell Physiol Biochem 14, 311–324PubMedCrossRefGoogle Scholar
  180. 180.
    Sarugaser, R., Lickorish, D., Baksh, D., Hosseini, M. M., and Davies, J. E. (2005) Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem cells (Dayton, Ohio) 23, 220–229CrossRefGoogle Scholar
  181. 181.
    Shih, D. T., Lee, D. C., Chen, S. C., Tsai, R. Y., Huang, C. T., Tsai, C. C., Shen, E. Y., and Chiu, W. T. (2005) Isolation and characterization of neurogenic mesenchymal stem cells in human scalp tissue. Stem cells (Dayton, Ohio) 23, 1012–1020CrossRefGoogle Scholar
  182. 182.
    Roufosse, C. A., Direkze, N. C., Otto, W. R., and Wright, N. A. (2004) Circulating mesenchymal stem cells. Int J Biochem Cell Biol 36, 585–597PubMedCrossRefGoogle Scholar
  183. 183.
    Quarto, R., Mastrogiacomo, M., Cancedda, R., Kutepov, S. M., Mukhachev, V., Lavroukov, A., Kon, E., and Marcacci, M. (2001) Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med 344, 385–386PubMedCrossRefGoogle Scholar
  184. 184.
    Horwitz, E. M., Prockop, D. J., Fitzpatrick, L. A., Koo, W. W., Gordon, P. L., Neel, M., Sussman, M., Orchard, P., Marx, J. C., Pyeritz, R. E., and Brenner, M. K. (1999) Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat med 5, 309–313PubMedCrossRefGoogle Scholar
  185. 185.
    Horwitz, E. M., Prockop, D. J., Gordon, P. L., Koo, W. W., Fitzpatrick, L. A., Neel, M. D., McCarville, M. E., Orchard, P. J., Pyeritz, R. E., and Brenner, M. K. (2001) Clinical responses to bone marrow transplantation in children with severe osteogenesis imperfecta. Blood 97, 1227–1231PubMedCrossRefGoogle Scholar
  186. 186.
    Le Blanc, K., Gotherstrom, C., Ringden, O., Hassan, M., McMahon, R., Horwitz, E., Anneren, G., Axelsson, O., Nunn, J., Ewald, U., Norden-Lindeberg, S., Jansson, M., Dalton, A., Astrom, E., and Westgren, M. (2005) Fetal mesenchymal stem-cell engraftment in bone after in utero transplantation in a patient with severe osteogenesis imperfecta. Transplantation 79, 1607–1614PubMedCrossRefGoogle Scholar
  187. 187.
    Wang, X., Li, F., and Niyibizi, C. (2006) Progenitors systemically transplanted into neonatal mice localize to areas of active bone formation in vivo: implications of cell therapy for skeletal diseases. Stem cells (Dayton, Ohio) 24, 1869–1878CrossRefGoogle Scholar
  188. 188.
    Kuo, C. K., Li, W. J., Mauck, R. L., and Tuan, R. S. (2006) Cartilage tissue engineering: its potential and uses. Curr Opin Rheumatol 18, 64–73PubMedCrossRefGoogle Scholar
  189. 189.
    Breinan, H. A., Minas, T., Hsu, H. P., Nehrer, S., Sledge, C. B., and Spector, M. (1997) Effect of cultured autologous chondrocytes on repair of chondral defects in a canine model. J Bone Joint Surg Am 79, 1439–1451PubMedGoogle Scholar
  190. 190.
    Sams, A. E., and Nixon, A. J. (1995) Chondrocyte-laden collagen scaffolds for resurfacing extensive articular cartilage defects. Osteoarthritis Cartilage 3, 47–59PubMedCrossRefGoogle Scholar
  191. 191.
    Yoo, J. U., Barthel, T. S., Nishimura, K., Solchaga, L., Caplan, A. I., Goldberg, V. M., and Johnstone, B. (1998) The chondrogenic potential of human bone-marrow-derived mesenchymal progenitor cells. J Bone Joint Surg Am 80, 1745–1757PubMedGoogle Scholar
  192. 192.
    Worster, A. A., Nixon, A. J., Brower-Toland, B. D., and Williams, J. (2000) Effect of transforming growth factor beta1 on chondrogenic differentiation of cultured equine mesenchymal stem cells. Am J Vet Res 61, 1003–1010PubMedCrossRefGoogle Scholar
  193. 193.
    Sekiya, I., Larson, B. L., Smith, J. R., Pochampally, R., Cui, J. G., and Prockop, D. J. (2002) Expansion of human adult stem cells from bone marrow stroma: conditions that maximize the yields of early progenitors and evaluate their quality. Stem cells (Dayton, Ohio) 20, 530–541CrossRefGoogle Scholar
  194. 194.
    Wang, D. W., Fermor, B., Gimble, J. M., Awad, H. A., and Guilak, F. (2005) Influence of oxygen on the proliferation and metabolism of adipose derived adult stem cells. J Cell Physiol 204, 184–191PubMedCrossRefGoogle Scholar
  195. 195.
    Sakai, D., Mochida, J., Iwashina, T., Watanabe, T., Nakai, T., Ando, K., and Hotta, T. (2005) Differentiation of mesenchymal stem cells transplanted to a rabbit degenerative disc model: potential and limitations for stem cell therapy in disc regeneration. Spine 30, 2379–2387PubMedCrossRefGoogle Scholar
  196. 196.
    Adachi, N., Sato, K., Usas, A., Fu, F. H., Ochi, M., Han, C. W., Niyibizi, C., and Huard, J. (2002) Muscle derived, cell based ex vivo gene therapy for treatment of full thickness articular cartilage defects. J Rheumatol 29, 1920–1930PubMedGoogle Scholar
  197. 197.
    Kafienah, W., Mistry, S., Dickinson, S. C., Sims, T. J., Learmonth, I., and Hollander, A. P. (2007) Three-dimensional cartilage tissue engineering using adult stem cells from osteoarthritis patients. Arthritis rheum 56, 177–187PubMedCrossRefGoogle Scholar
  198. 198.
    Miller, L. W., and Missov, E. D. (2001) Epidemiology of heart failure. Cardiol Clin 19, 547–555PubMedCrossRefGoogle Scholar
  199. 199.
    Buckingham, M., Meilhac, S., and Zaffran, S. (2005) Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet 6, 826–835PubMedCrossRefGoogle Scholar
  200. 200.
    Solloway, M. J., and Harvey, R. P. (2003) Molecular pathways in myocardial development: a stem cell perspective. Cardiovasc Res 58, 264–277PubMedCrossRefGoogle Scholar
  201. 201.
    Oh, H., Chi, X., Bradfute, S. B., Mishina, Y., Pocius, J., Michael, L. H., Behringer, R. R., Schwartz, R. J., Entman, M. L., and Schneider, M. D. (2004) Cardiac muscle plasticity in adult and embryo by heart-derived progenitor cells. Ann N Y Acad Sci 1015, 182–189PubMedCrossRefGoogle Scholar
  202. 202.
    Beltrami, A. P., Barlucchi, L., Torella, D., Baker, M., Limana, F., Chimenti, S., Kasahara, H., Rota, M., Musso, E., Urbanek, K., Leri, A., Kajstura, J., Nadal-Ginard, B., and Anversa, P. (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114, 763–776PubMedCrossRefGoogle Scholar
  203. 203.
    Martin, C. M., Meeson, A. P., Robertson, S. M., Hawke, T. J., Richardson, J. A., Bates, S., Goetsch, S. C., Gallardo, T. D., and Garry, D. J. (2004) Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Dev Biol 265, 262–275PubMedCrossRefGoogle Scholar
  204. 204.
    Urbanek, K., Torella, D., Sheikh, F., De Angelis, A., Nurzynska, D., Silvestri, F., Beltrami, C. A., Bussani, R., Beltrami, A. P., Quaini, F., Bolli, R., Leri, A., Kajstura, J., and Anversa, P. (2005) Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure. Proc Natl Acad Sci USA 102, 8692–8697Google Scholar
  205. 205.
    Cai, C. L., Liang, X., Shi, Y., Chu, P. H., Pfaff, S. L., Chen, J., and Evans, S. (2003) Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell 5, 877–889PubMedCrossRefGoogle Scholar
  206. 206.
    Laugwitz, K. L., Moretti, A., Lam, J., Gruber, P., Chen, Y., Woodard, S., Lin, L. Z., Cai, C. L., Lu, M. M., Reth, M., Platoshyn, O., Yuan, J. X., Evans, S., and Chien, K. R. (2005) Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 433, 647–653PubMedCrossRefGoogle Scholar
  207. 207.
    Kattman, S. J., Huber, T. L., and Keller, G. M. (2006) Multipotent flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages. Dev Cell 11, 723–732PubMedCrossRefGoogle Scholar
  208. 208.
    Moretti, A., Caron, L., Nakano, A., Lam, J. T., Bernshausen, A., Chen, Y., Qyang, Y., Bu, L., Sasaki, M., Martin-Puig, S., Sun, Y., Evans, S. M., Laugwitz, K. L., and Chien, K. R. (2006) Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell 127, 1151–1165PubMedCrossRefGoogle Scholar
  209. 209.
    Wu, S. M., Fujiwara, Y., Cibulsky, S. M., Clapham, D. E., Lien, C. L., Schultheiss, T. M., and Orkin, S. H. (2006) Developmental origin of a bipotential myocardial and smooth muscle cell precursor in the mammalian heart. Cell 127, 1137–1150PubMedCrossRefGoogle Scholar
  210. 210.
    Urbanek, K., Cesselli, D., Rota, M., Nascimbene, A., De Angelis, A., Hosoda, T., Bearzi, C., Boni, A., Bolli, R., Kajstura, J., Anversa, P., and Leri, A. (2006) Stem cell niches in the adult mouse heart. Proc Natl Acad Sci USA 103, 9226–9231Google Scholar
  211. 211.
    Ayach, B. B., Yoshimitsu, M., Dawood, F., Sun, M., Arab, S., Chen, M., Higuchi, K., Siatskas, C., Lee, P., Lim, H., Zhang, J., Cukerman, E., Stanford, W. L., Medin, J. A., and Liu, P. P. (2006) Stem cell factor receptor induces progenitor and natural killer cell-mediated cardiac survival and repair after myocardial infarction. Proc Natl Acad Sci USA 103, 2304–2309Google Scholar
  212. 212.
    Mummery, C. (2007) Cardiomyocytes from human embryonic stem cells: more than heart repair alone. Bioessays 29, 572–579PubMedCrossRefGoogle Scholar
  213. 213.
    Wei, H., Juhasz, O., Li, J., Tarasova, Y. S., and Boheler, K. R. (2005) Embryonic stem cells and cardiomyocyte differentiation: phenotypic and molecular analyses. J Cell Mol Med 9, 804–817.PubMedCrossRefGoogle Scholar
  214. 214.
    Maltsev, V. A., Wobus, A. M., Rohwedel, J., Bader, M., and Hescheler, J. (1994) Cardiomyocytes differentiated in vitro from embryonic stem cells developmentally express cardiac-specific genes and ionic currents. Circ Res 75, 233–244PubMedGoogle Scholar
  215. 215.
    Boheler, K. R., Czyz, J., Tweedie, D., Yang, H. T., Anisimov, S. V., and Wobus, A. M. (2002) Differentiation of pluripotent embryonic stem cells into cardiomyocytes. Circ Res 91, 189–201PubMedCrossRefGoogle Scholar
  216. 216.
    Zandstra, P. W., Bauwens, C., Yin, T., Liu, Q., Schiller, H., Zweigerdt, R., Pasumarthi, K. B., and Field, L. J. (2003) Scalable production of embryonic stem cell-derived cardiomyocytes. Tissue Eng 9, 767–778PubMedCrossRefGoogle Scholar
  217. 217.
    Metzger, J. M., Lin, W. I., Johnston, R. A., Westfall, M. V., and Samuelson, L. C. (1995) Myosin heavy chain expression in contracting myocytes isolated during embryonic stem cell cardiogenesis. Circ Res 76, 710–719PubMedGoogle Scholar
  218. 218.
    Klug, M. G., Soonpaa, M. H., Koh, G. Y., and Field, L. J. (1996) Genetically selected cardiomyocytes from differentiating embronic stem cells form stable intracardiac grafts. J Clin Invest 98, 216–224PubMedCrossRefGoogle Scholar
  219. 219.
    Kolossov, E., Fleischmann, B. K., Liu, Q., Bloch, W., Viatchenko-Karpinski, S., Manzke, O., Ji, G. J., Bohlen, H., Addicks, K., and Hescheler, J. (1998) Functional characteristics of ES cell-derived cardiac precursor cells identified by tissue-specific expression of the green fluorescent protein. J Cell Biol 143, 2045–2056PubMedCrossRefGoogle Scholar
  220. 220.
    Meyer, N., Jaconi, M., Landopoulou, A., Fort, P., and Puceat, M. (2000) A fluorescent reporter gene as a marker for ventricular specification in ES-derived cardiac cells. FEBS Lett 478, 151–158PubMedCrossRefGoogle Scholar
  221. 221.
    Fijnvandraat, A. C., van Ginneken, A. C., Schumacher, C. A., Boheler, K. R., Lekanne Deprez, R. H., Christoffels, V. M., and Moorman, A. F. (2003) Cardiomyocytes purified from differentiated embryonic stem cells exhibit characteristics of early chamber myocardium. J Mol Cell Cardiol 35, 1461–1472PubMedCrossRefGoogle Scholar
  222. 222.
    Singla, D. K., Hacker, T. A., Ma, L., Douglas, P. S., Sullivan, R., Lyons, G. E., and Kamp, T. J. (2006) Transplantation of embryonic stem cells into the infarcted mouse heart: formation of multiple cell types. J Mol Cell Cardiol 40, 195–200PubMedCrossRefGoogle Scholar
  223. 223.
    Leor, J., Gerecht-Nir, S., Cohen, S., Miller, L., Holbova, R., Ziskind, A., Shachar, M., Feinberg, M. S., Guetta, E., and Itskovitz-Eldor, J. (2007) Human embryonic stem cell transplantation to repair the infarcted myocardium. Hear t 93, 1173–1174Google Scholar
  224. 224.
    Murry, C. E., Field, L. J., and Menasche, P. (2005) Cell-based cardiac repair: reflections at the 10-year point. Circulation 112, 3174–3183PubMedCrossRefGoogle Scholar
  225. 225.
    Menasche, P., Hagege, A. A., Scorsin, M., Pouzet, B., Desnos, M., Duboc, D., Schwartz, K., Vilquin, J. T., and Marolleau, J. P. (2001) Myoblast transplantation for heart failure. Lancet 357, 279–280PubMedCrossRefGoogle Scholar
  226. 226.
    Orlic, D., Kajstura, J., Chimenti, S., Jakoniuk, I., Anderson, S. M., Li, B., Pickel, J., McKay, R., Nadal-Ginard, B., Bodine, D. M., Leri, A., and Anversa, P. (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410, 701–705PubMedCrossRefGoogle Scholar
  227. 227.
    Badorff, C., Brandes, R. P., Popp, R., Rupp, S., Urbich, C., Aicher, A., Fleming, I., Busse, R., Zeiher, A. M., and Dimmeler, S. (2003) Transdifferentiation of blood-derived human adult endothelial progenitor cells into functionally active cardiomyocytes. Circulation 107, 1024–1032PubMedCrossRefGoogle Scholar
  228. 228.
    Siepe, M., Heilmann, C., von Samson, P., Menasche, P., and Beyersdorf, F. (2005) Stem cell research and cell transplantation for myocardial regeneration. Eur J Cardiothorac Surg 28, 318–324PubMedCrossRefGoogle Scholar
  229. 229.
    Gnecchi, M., He, H., Liang, O. D., Melo, L. G., Morello, F., Mu, H., Noiseux, N., Zhang, L., Pratt, R. E., Ingwall, J. S., and Dzau, V. J. (2005) Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat med 11, 367–368PubMedCrossRefGoogle Scholar
  230. 230.
    Fazel, S., Cimini, M., Chen, L., Li, S., Angoulvant, D., Fedak, P., Verma, S., Weisel, R. D., Keating, A., and Li, R. K. (2006) Cardioprotective c-kit+ cells are from the bone marrow and regulate the myocardial balance of angiogenic cytokines. J Clin Invest 116, 1865–1877PubMedCrossRefGoogle Scholar
  231. 231.
    Reinecke, H., Poppa, V., and Murry, C. E. (2002) Skeletal muscle stem cells do not transdifferentiate into cardiomyocytes after cardiac grafting. J Mol Cell Cardiol 34, 241–249PubMedCrossRefGoogle Scholar
  232. 232.
    Winitsky, S. O., Gopal, T. V., Hassanzadeh, S., Takahashi, H., Gryder, D., Rogawski, M. A., Takeda, K., Yu, Z. X., Xu, Y. H., and Epstein, N. D. (2005) Adult murine skeletal muscle contains cells that can differentiate into beating cardiomyocytes in vitro. PLoS Biol 3, e87PubMedCrossRefGoogle Scholar
  233. 233.
    Chien, K. R. (2005) Alchemy and the new age of cardiac muscle cell biology. PLoS Biol 3, e131PubMedCrossRefGoogle Scholar
  234. 234.
    Wagers, A. J., and Weissman, I. L. (2004) Plasticity of adult stem cells. Cell 116, 639–648PubMedCrossRefGoogle Scholar
  235. 235.
    Murry, C. E., Soonpaa, M. H., Reinecke, H., Nakajima, H., Nakajima, H. O., Rubart, M., Pasumarthi, K. B., Virag, J. I., Bartelmez, S. H., Poppa, V., Bradford, G., Dowell, J. D., Williams, D. A., and Field, L. J. (2004) Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428, 664–668PubMedCrossRefGoogle Scholar
  236. 236.
    Jackson, K. A., Majka, S. M., Wang, H., Pocius, J., Hartley, C. J., Majesky, M. W., Entman, M. L., Michael, L. H., Hirschi, K. K., and Goodell, M. A. (2001) Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest 107, 1395–1402PubMedCrossRefGoogle Scholar
  237. 237.
    Janssens, S., Dubois, C., Bogaert, J., Theunissen, K., Deroose, C., Desmet, W., Kalantzi, M., Herbots, L., Sinnaeve, P., Dens, J., Maertens, J., Rademakers, F., Dymarkowski, S., Gheysens, O., Van Cleemput, J., Bormans, G., Nuyts, J., Belmans, A., Mortelmans, L., Boogaerts, M., and Van de Werf, F. (2006) Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet 367, 113–121PubMedCrossRefGoogle Scholar
  238. 238.
    Kalka, C., Masuda, H., Takahashi, T., Kalka-Moll, W. M., Silver, M., Kearney, M., Li, T., Isner, J. M., and Asahara, T. (2000) Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci USA 97, 3422–3427Google Scholar
  239. 239.
    Vesely, I. (2005) Heart valve tissue engineering. Circ Res 97, 743–755PubMedCrossRefGoogle Scholar
  240. 240.
    Dalrymple-Hay, M. J., Pearce, R., Dawkins, S., Haw, M. P., Lamb, R. K., Livesey, S. A., and Monro, J. L. (2000) A single-center experience with 1,378 CarboMedics mechanical valve implants. Ann Thorac Surg 69, 457–463PubMedCrossRefGoogle Scholar
  241. 241.
    Schoen, F. J., and Levy, R. J. (1999) Founder's Award, 25th Annual Meeting of the Society for Biomaterials, perspectives. Providence, RI, April 28-May 2, 1999. Tissue heart valves: current challenges and future research perspectives. J Biomed Mater Res 47, 439–465PubMedCrossRefGoogle Scholar
  242. 242.
    Schoen, F. J., and Levy, R. J. (2005) Calcification of tissue heart valve substitutes: progress toward understanding and prevention. Ann Thorac Surg 79, 1072–1080PubMedCrossRefGoogle Scholar
  243. 243.
    Durbin, A. D., and Gotlieb, A. I. (2002) Advances towards understanding heart valve response to injury. Cardiovasc Pathol 11, 69–77PubMedCrossRefGoogle Scholar
  244. 244.
    Sutherland, F. W., Perry, T. E., Yu, Y., Sherwood, M. C., Rabkin, E., Masuda, Y., Garcia, G. A., McLellan, D. L., Engelmayr, G. C., Jr., Sacks, M. S., Schoen, F. J., and Mayer, J. E., Jr. (2005) From stem cells to viable autologous semilunar heart valve. Circulation 111, 2783–2791PubMedCrossRefGoogle Scholar
  245. 245.
    Hoerstrup, S. P., Kadner, A., Melnitchouk, S., Trojan, A., Eid, K., Tracy, J., Sodian, R., Visjager, J. F., Kolb, S. A., Grunenfelder, J., Zund, G., and Turina, M. I. (2002) Tissue engineering of functional trileaflet heart valves from human marrow stromal cells. Circulation 106, I143–150PubMedGoogle Scholar
  246. 246.
    Neuenschwander, S., and Hoerstrup, S. P. (2004) Heart valve tissue engineering. Transpl Immunol 12, 359–365PubMedCrossRefGoogle Scholar
  247. 247.
    Riha, G. M., Lin, P. H., Lumsden, A. B., Yao, Q., and Chen, C. (2005) Review: application of stem cells for vascular tissue engineering. Tissue Eng 11, 1535–1552PubMedCrossRefGoogle Scholar
  248. 248.
    Deutsch, G., Jung, J., Zheng, M., Lora, J., and Zaret, K. S. (2001) A bipotential precursor population for pancreas and liver within the embryonic endoderm. Development 128, 871–881PubMedGoogle Scholar
  249. 249.
    Shafritz, D. A., Oertel, M., Menthena, A., Nierhoff, D., and Dabeva, M. D. (2006) Liver stem cells and prospects for liver reconstitution by transplanted cells. Hepatology 43, S89–98PubMedCrossRefGoogle Scholar
  250. 250.
    Fausto, N., Campbell, J. S., and Riehle, K. J. (2006) Liver regeneration. Hepatology 43, S45–53PubMedCrossRefGoogle Scholar
  251. 251.
    Nussler, A., Konig, S., Ott, M., Sokal, E., Christ, B., Thasler, W., Brulport, M., Gabelein, G., Schormann, W., Schulze, M., Ellis, E., Kraemer, M., Nocken, F., Fleig, W., Manns, M., Strom, S. C., and Hengstler, J. G. (2006) Present status and perspectives of cell-based therapies for liver diseases. J Hepatol 45, 144–159PubMedCrossRefGoogle Scholar
  252. 252.
    Rhim, J. A., Sandgren, E. P., Degen, J. L., Palmiter, R. D., and Brinster, R. L. (1994) Replacement of diseased mouse liver by hepatic cell transplantation. Science NY 263, 1149–1152Google Scholar
  253. 253.
    Overturf, K., al-Dhalimy, M., Ou, C. N., Finegold, M., and Grompe, M. (1997) Serial transplantation reveals the stem-cell-like regenerative potential of adult mouse hepatocytes. Am J Pathol 151, 1273–1280PubMedGoogle Scholar
  254. 254.
    Michalopoulos, G. K., Barua, L., and Bowen, W. C. (2005) Transdifferentiation of rat hepatocytes into biliary cells after bile duct ligation and toxic biliary injury. Hepatology 41, 535–544PubMedCrossRefGoogle Scholar
  255. 255.
    Koenig, S., Krause, P., Drabent, B., Schaeffner, I., Christ, B., Schwartz, P., Unthan-Fechner, K., and Probst, I. (2006) The expression of mesenchymal, neural and haematopoietic stem cell markers in adult hepatocytes proliferating in vitro. J Hepatol 44, 1115–1124PubMedCrossRefGoogle Scholar
  256. 256.
    Evarts, R. P., Nagy, P., Marsden, E., and Thorgeirsson, S. S. (1987) A precursor-product relationship exists between oval cells and hepatocytes in rat liver. Carcinogenesis 8, 1737–1740PubMedCrossRefGoogle Scholar
  257. 257.
    Evarts, R. P., Nagy, P., Nakatsukasa, H., Marsden, E., and Thorgeirsson, S. S. (1989) In vivo differentiation of rat liver oval cells into hepatocytes. Cancer Res 49, 1541–1547PubMedGoogle Scholar
  258. 258.
    Fujio, K., Evarts, R. P., Hu, Z., Marsden, E. R., and Thorgeirsson, S. S. (1994) Expression of stem cell factor and its receptor, c-kit, during liver regeneration from putative stem cells in adult rat. Lab Invest 70, 511–516PubMedGoogle Scholar
  259. 259.
    Nierhoff, D., Ogawa, A., Oertel, M., Chen, Y. Q., and Shafritz, D. A. (2005) Purification and characterization of mouse fetal liver epithelial cells with high in vivo repopulation capacity. Hepatology 42, 130–139PubMedCrossRefGoogle Scholar
  260. 260.
    Song, S., Witek, R. P., Lu, Y., Choi, Y. K., Zheng, D., Jorgensen, M., Li, C., Flotte, T. R., and Petersen, B. E. (2004) Ex vivo transduced liver progenitor cells as a platform for gene therapy in mice. Hepatology 40, 918–924PubMedGoogle Scholar
  261. 261.
    Herrera, M. B., Bruno, S., Buttiglieri, S., Tetta, C., Gatti, S., Deregibus, M. C., Bussolati, B., and Camussi, G. (2006) Isolation and Characterization of a Stem Cell Population from Adult Human Liver. Stem cells (Dayton, Ohio ) 24, 2840–2850Google Scholar
  262. 262.
    Robertson, R. P. (2004) Islet transplantation as a treatment for diabetes – a work in progress. N Engl J Med 350, 694–705PubMedCrossRefGoogle Scholar
  263. 263.
    Bonner-Weir, S., and Weir, G. C. (2005) New sources of pancreatic beta-cells. Nat Biotechnol 23, 857–861PubMedCrossRefGoogle Scholar
  264. 264.
    Dor, Y., Brown, J., Martinez, O. I., and Melton, D. A. (2004) Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature 429, 41–46PubMedCrossRefGoogle Scholar
  265. 265.
    Bonner-Weir, S., Baxter, L. A., Schuppin, G. T., and Smith, F. E. (1993) A second pathway for regeneration of adult exocrine and endocrine pancreas. A possible recapitulation of embryonic development. Diabetes 42, 1715–1720PubMedCrossRefGoogle Scholar
  266. 266.
    Zulewski, H., Abraham, E. J., Gerlach, M. J., Daniel, P. B., Moritz, W., Muller, B., Vallejo, M., Thomas, M. K., and Habener, J. F. (2001) Multipotential nestin-positive stem cells isolated from adult pancreatic islets differentiate ex vivo into pancreatic endocrine, exocrine, and hepatic phenotypes. Diabetes 50, 521–533PubMedCrossRefGoogle Scholar
  267. 267.
    Seaberg, R. M., Smukler, S. R., Kieffer, T. J., Enikolopov, G., Asghar, Z., Wheeler, M. B., Korbutt, G., and van der Kooy, D. (2004) Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages. Nat Biotechnol 22, 1115–1124PubMedCrossRefGoogle Scholar
  268. 268.
    Bonner-Weir, S., Toschi, E., Inada, A., Reitz, P., Fonseca, S. Y., Aye, T., and Sharma, A. (2004) The pancreatic ductal epithelium serves as a potential pool of progenitor cells. Pediatr Diabetes 5 Suppl 2, 16–22PubMedCrossRefGoogle Scholar
  269. 269.
    Baeyens, L., De Breuck, S., Lardon, J., Mfopou, J. K., Rooman, I., and Bouwens, L. (2005) In vitro generation of insulin-producing beta cells from adult exocrine pancreatic cells. Diabetologia 48, 49–57PubMedCrossRefGoogle Scholar
  270. 270.
    Rajagopal, J., Anderson, W. J., Kume, S., Martinez, O. I., and Melton, D. A. (2003) Insulin staining of ES cell progeny from insulin uptake. Science NY 299, 363Google Scholar
  271. 271.
    Baharvand, H., Jafary, H., Massumi, M., and Ashtiani, S. K. (2006) Generation of insulin-secreting cells from human embryonic stem cells. Dev Growth Differ 48, 323–332PubMedCrossRefGoogle Scholar
  272. 272.
    Lavon, N., Yanuka, O., and Benvenisty, N. (2006) The effect of overexpression of Pdx1 and Foxa2 on the differentiation of human embryonic stem cells into pancreatic cells. Stem cells (Dayton, Ohio) 24, 1923–1930CrossRefGoogle Scholar
  273. 273.
    Zalzman, M., Gupta, S., Giri, R. K., Berkovich, I., Sappal, B. S., Karnieli, O., Zern, M. A., Fleischer, N., and Efrat, S. (2003) Reversal of hyperglycemia in mice by using human expandable insulin-producing cells differentiated from fetal liver progenitor cells. Proc Natl Acad Sci USA 100, 7253–7258Google Scholar
  274. 274.
    Yang, L. J. (2006) Liver stem cell-derived beta-cell surrogates for treatment of type 1 diabetes. Autoimmun Rev 5, 409–413PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Ali M. Riazi
    • 1
  • Sarah Y. Kwon
    • 2
  • William L. Stanford
    • 2
  1. 1.Department of Chemical Engineering and Applied ChemistryUniversity of TorontoTorontoCanada
  2. 2.Institute of Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations