Stem Cells in Regenerative Medicine pp 171-183

Part of the Methods in Molecular Biology book series (MIMB, volume 482)

Xenotransplantation of Embryonic Stem Cell-Derived Motor Neurons into the Developing Chick Spinal Cord

  • Hynek Wichterle
  • Mirza Peljto
  • Stephane Nedelec

Abstract

A growing number of specific cell types have been successfully derived from embryonic stem cells (ES cells), including a variety of neural cells. In vitro generated cells need to be extensively characterized to establish functional equivalency with their in vivo counterparts. The ultimate test for the ability of ES cell-derived neurons to functionally integrate into neural networks is transplantation into the developing central nervous system, a challenging technique limited by the poor accessibility of mammalian embryos. Here we describe xenotransplantation of mouse embryonic stem cell-derived motor neurons into the developing chick neural tube as an alternative for testing the ability of in vitro generated neurons to survive, integrate, extend axons, and form appropriate synaptic contacts with functionally relevant targets in vivo. Similar methods can be adapted to study functionality of other mammalian cells, including derivatives of human ES cells.

Key words

Embryonic stem cells motor neurons xenotransplantation chick neural tube spinal cord 

References

  1. 1.
    Kawasaki, H., Mizuseki, K., Nishikawa, S., Kaneko, S., Kuwana, Y., Nakanishi, S., Nishikawa, S. I., and Sasai, Y. (2000) Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 28, 31–40.CrossRefPubMedGoogle Scholar
  2. 2.
    Bjorklund, L. M., Sanchez-Pernaute, R., Chung, S., Andersson, T., Chen, I. Y., McNaught, K. S., Brownell, A. L., Jenkins, B. G., Wahlestedt, C., Kim, K. S., and Isacson, O. (2002) Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc Natl Acad Sci USA 99, 2344–9.CrossRefPubMedGoogle Scholar
  3. 3.
    Harper, J. M., Krishnan, C., Darman, J. S., Deshpande, D. M., Peck, S., Shats, I., Backovic, S., Rothstein, J. D., and Kerr, D. A. (2004) Axonal growth of embryonic stem cell-derived motoneurons in vitro and in motoneuron-injured adult rats. Proc Natl Acad Sci USA 101, 7123–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Tabar, V., Panagiotakos, G., Greenberg, E. D., Chan, B. K., Sadelain, M., Gutin, P. H., and Studer, L. (2005) Migration and differentiation of neural precursors derived from human embryonic stem cells in the rat brain. Nat Biotechnol 23, 601–6.CrossRefPubMedGoogle Scholar
  5. 5.
    Wichterle, H., Turnbull, D. H., Nery, S., Fishell, G., and Alvarez-Buylla, A. (2001) In utero fate mapping reveals distinct migratory pathways and fates of neurons born in the mammalian basal forebrain. Development 128, 3759–71.PubMedGoogle Scholar
  6. 6.
    Olsson, M., Campbell, K., and Turnbull, D. H. (1997) Specification of mouse telencephalic and mid-hindbrain progenitors following heterotopic ultrasound-guided embryonic transplantation. Neuron 19, 761–72.CrossRefPubMedGoogle Scholar
  7. 7.
    Fontaine-Perus, J. (2000) Interspecific mouse-chick chimeras. Methods Mol Biol 135, 443–6.PubMedGoogle Scholar
  8. 8.
    Fontaine-Perus, J., Halgand, P., Cheraud, Y., Rouaud, T., Velasco, M. E., Cifuentes Diaz, C., and Rieger, F. (1997) Mouse-chick chimera: a developmental model of murine neurogenic cells. Development 124, 3025–36.PubMedGoogle Scholar
  9. 9.
    Wichterle, H., Lieberam, I., Porter, J. A., and Jessell, T. M. (2002) Directed differentiation of embryonic stem cells into motor neurons. Cell 110, 385–97.CrossRefPubMedGoogle Scholar
  10. 10.
    Goldstein, R. S. (2006) Transplantation of human embryonic stem cells to the chick embryo. Methods Mol Biol 331, 137–51.PubMedGoogle Scholar
  11. 11.
    Frank-Kamenetsky, M., Zhang, X. M., Bottega, S., Guicherit, O., Wichterle, H., Dudek, H., Bumcrot, D., Wang, F. Y., Jones, S., Shulok, J., Rubin, L. L., and Porter, J. A. (2002) Small-molecule modulators of Hedgehog signalling: identification and characterization of Smoothened agonists and antagonists. J Biol 1, 10.CrossRefPubMedGoogle Scholar
  12. 12.
    Hamburger, V., and Hamilton, H. L. (1992) A series of normal stages in the development of the chick embryo. 1951. Dev Dyn 195, 231–72.PubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Hynek Wichterle
    • 1
  • Mirza Peljto
    • 1
  • Stephane Nedelec
    • 1
  1. 1.Departments of Pathology, Neurology, and Neurobiology and BehaviorColumbia University Medical CenterNew YorkUSA

Personalised recommendations