Immobilization of Enzymes and Cells pp 357-365

Part of the Methods in Biotechnology™ book series (MIBT, volume 22) | Cite as

Immobilization of Cells on Polyurethane Foam

  • Ignacio de Ory
  • Gema Cabrera
  • Martin Ramirez
  • Ana Blandino

Abstract

In this chapter, protocols and details for the immobilization of a model cell onto polyurethane foam carriers are provided in order to facilitate the use of such systems in laboratory or industrial reactors. Polyurethane foam has recently acquired great relevance as a carrier for its good mechanical properties, high porosity, and large adsorption surface. In addition, it has a very low commercial cost. Two different immobilization protocols have been described, differing in the flow regime or the possibilities for the reactor: immobilization in a stirred tank reactor working in a discontinuous regime (by cycles) and immobilization in a packed column working in continuous operation mode. Protocols for carrier sterilization, analytical methodology, and immobilization are described.

Key Words

Adsorption packed column polyurethane foam stirred tank 

References

  1. 1.
    Moonmangmee S., Kawabata K., Tanaka S., Toyama H., Adachi O., and Matsushita K. (2001) A novel polysaccharide involved in the pellicle formation of Acetobacter aceti. J. Biosci. Bioeng. 93(2), 192–200.CrossRefGoogle Scholar
  2. 2.
    Manohar S., Kim C. K., and Karegoudar T. B. (2001) Enhanced degradation of naphthalene by immobilization of Pseudomonas sp. strain NGK1 in polyurethane foam. Appl. Microbiol. Biotechnol. 55(3), 311–316.CrossRefGoogle Scholar
  3. 3.
    Moe W. M. and Irvine R. L. (2001) Polyurethane foam based biofilter media for toluene removal. Water Sci. Technol. 43(11), 35–42.Google Scholar
  4. 4.
    Hori H., Yamashita S., Ishii M., Tanji Y., and Unno H. (2001) Isolation, characterization and application to off-gas treatment of toluene-degrading bacteria. J. Chem. Eng. 34(9), 1120–1126.CrossRefGoogle Scholar
  5. 5.
    Moe W. M. and Irvine R. L. (2001) Effect of nitrogen limitation on perfomance of toluene degrading biofilters. Water Res. 35(6), 1407–1414.CrossRefGoogle Scholar
  6. 6.
    Yang C., Suidan M. T., Zhu X., and Kim B. J. (2003) Comparison of a singlelayer and multi-layer rotating drum biofilters for VOC removal. Environ. Prog. 22(2), 87–94.CrossRefGoogle Scholar
  7. 7.
    Burgess J. E., Parsons S. A., and Stuetz R. M. (2001) Developments in odourcontrol and waste gas treatment biotechnology: a review. Biotechnol. Adv. 19, 35–63.CrossRefGoogle Scholar
  8. 8.
    de Ory I., Romero L. E., and Cantero D. (2004) Optimization of immobilization conditions for vinegar production. Siran, wood chips and polyurethane foam as carriers for Acetobacter aceti. Process Biochem. 39, 547–555.CrossRefGoogle Scholar
  9. 9.
    Holubar P., Plas C., Weiss B., Sasshofer S., and Braun R. (1994) Hydrocarbon removal with a polyurethane foam bioreactor. Biologische Abgasreinigung. 1104, 505–510.Google Scholar
  10. 10.
    Armentia H. and Webb C. (1992) Ferrous sulfate oxidation using Thiobacillus ferrooxidans cells immobilised in polyurethane foam support particles. Appl. Microbiol. Biotechnol. 36, 697–700.CrossRefGoogle Scholar
  11. 11.
    Mori A. (1985) Production of vinegar by immobilized cells. Process Biochem. 20(3), 67–74.Google Scholar
  12. 12.
    Van Loosdrecht M. C. M., Eikelboom D., Gjaltema A., Mulder A., Tijhuis L., and Heijnen J. J. (1995) Biofilm structures. Wat. Sci. Tech. 32(8), 35–43.CrossRefGoogle Scholar
  13. 13.
    de Ory I., Romero L. E., and Cantero D. (2000) Influence of shear stress on immobilization of acetic acid bacteria on polyurethane foam carriers. Mededelingen-Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen. Universiteit Gent. 65(3a), 235–241.Google Scholar
  14. 14.
    O’Reilly A. M. and Scott J. A. (1995) Defined coimmobilization of mixed microorganism cultures. Enzyme Microb. Technol. 17, 636–646.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Ignacio de Ory
    • 1
  • Gema Cabrera
    • 2
  • Martin Ramirez
    • 3
  • Ana Blandino
    • 4
  1. 1.Department of Chemical Engineering, Food Technology, and Environmental Technologies, Facultad de CienciasUniversity of CadizCadizSpain
  2. 2.Department of Chemical Engineering, Food Technology and Environmental Technologies, Facultad de CienciasUniversity of CadizCadizSpain
  3. 3.Department of Chemical Engineering, Food Technology, and Environmental Technologies, Facultad de CienciasUniversity of CadizCadizSpain
  4. 4.Department of Chemical Engineering, Food Technology, and Environmental Technologies, Facultad de CienciasUniversity of CadizCadizSpain

Personalised recommendations