Imaging Ca2+ Signals in Xenopus Oocytes

  • Sheila L. Dargan
  • Angelo Demuro
  • Ian Parker
Part of the Methods in Molecular Biology™ book series (MIMB, volume 322)


Xenopus oocytes have become a favored preparation in which to study the spatiotemporal dynamics of intracellular Ca2+ signaling. Advantages of the oocyte as a model cell system include its large size, lack of intracellular Ca2+ release channels other than the type 1 inositol trisphosphate receptor, and ease of expression of foreign receptors and channels. We describe the use of high-resolution fluorescence imaging techniques to visualize Ca2+ signals in Xenopus oocytes at levels ranging from global Ca2+ waves to single-channel Ca2+ microdomains.

Key Words

Ca2+ caged IP3 calcium confocal dye flash photolysis fluorescence imaging inositol IP3 linescan microinjection microscopy receptor signaling TIR video rate Xenopus oocytes 


  1. 1.
    Parys, J. B., Sernett, S. W., DeLisle, S., Snyder, P. M., Welsh, M. J., and Campbell, K. P. (1992) Isolation, characterization, and localization of the inositol 1,4,5-trisphosphate receptor protein in Xenopus laevis oocytes. J. Biol. Chem. 267, 18,776–18,782.PubMedGoogle Scholar
  2. 2.
    Lechleiter, J. D. and Clapham, D. E. (1992) Spiral waves and intracellular calcium signalling. J. Physiol. Paris. 86, 123–128.CrossRefPubMedGoogle Scholar
  3. 3.
    Parker, I., Choi, J., and Yao, Y. (1996) Elementary events of InsP3-induced Ca2+ liberation in Xenopus oocytes: hot spots, puffs and blips. Cell Calcium 20, 105–121.CrossRefPubMedGoogle Scholar
  4. 4.
    Sumikawa, K., Parker, I., and Miledi, R. (1989) Expression of neurotransmitter receptors and voltage-activated channels from brain mRNA in Xenopus oocytes. Methods Neurosci. 1, 30–44.Google Scholar
  5. 5.
    Dascal, N. (1987) The use of Xenopus oocytes for the study of ion channels. CRC Crit. Rev. Biochem. 22, 317–387.CrossRefPubMedGoogle Scholar
  6. 6.
    Dumont, J. N. (1972) Oogenesis in Xenopus laevis. Stages of oocyte development in laboratory maintained animals. J. Morphol. 136, 153–164.CrossRefPubMedGoogle Scholar
  7. 7.
    Tsein, R. Y. (1980) New calcium indicators and buffers with high selectivity against magnesium and photons: design, synthesis and properties of prototype structures. Biochemistry 19, 2396–2404.CrossRefGoogle Scholar
  8. 8.
    Tsein, R. Y. (1992) Intracellular signal transduction in four dimensions: from molecular design to physiology. Am. J. Physiol. 263, C723–C728.Google Scholar
  9. 9.
    Thomas, D., Tovey, S. C, Collins, T. J., Bootman, M. D., Berridge, M. J., and Lipp, P. (2000) A comparison of the fluorescent Ca2+ indicator properties and their use in measuring elementary and global Ca2+ signals. Cell Calcium 28, 213–223.CrossRefPubMedGoogle Scholar
  10. 10.
    John, L. M., Mosquera-Caro, M., Camacho, P., and Lechleiter, J. D. (2001) Control of IP3-mediated Ca2+ puffs in Xenopus laevis oocytes by the Ca2+-binding protein parvalbumin. J. Physiol. 535.1, 3–16.CrossRefGoogle Scholar
  11. 11.
    Pawley, J. B. (ed.) (1995) Handbook of Biological Confocal Microscopy, Plenum Press, New York.Google Scholar
  12. 12.
    Callamaras, N. and Parker, 1.(1999) Construction of a confocal microscope for real-time x–y and x–z imaging. Cell Calcium 26, 271–279.CrossRefPubMedGoogle Scholar
  13. 13.
    Callamaras. N. and Parker, I. (1999) Construction of a line-scan confocal microscope for physiological recording. Methods Enzvmol. 307, 152–170.CrossRefGoogle Scholar
  14. 14.
    Sanderson, M. and Parker, 1. (2003) Video-rate confocal microscopy. Methods Enzvmol. 360, 447–479.CrossRefGoogle Scholar
  15. 15.
    Parker, I., Callamaras, N., and Wier, W. G. (1997) A high-resolution, confocal laser-scanning microscope and flash photolysis system for physiological studies. Cell Calcium 21, 441–452.CrossRefPubMedGoogle Scholar
  16. 16.
    Callamaras, N. and Parker, 1.(1998) Caged inositol 1,4,5-trisphosphate for studying release of Ca2+ from intracellular stores. Methods Enzvmol. 291, 380–403.CrossRefGoogle Scholar
  17. 17.
    Demuro, A. and Parker, I. (2004) Imaging the activity and localization of single voltage-gated Ca3+ channels by total internal reflection fluorescence microscopy. Biophys. J. 86, 3250–3259.CrossRefPubMedGoogle Scholar
  18. 18.
    Axelrod, D. (2003) Total internal reflection microscopy in cell biology. Methods Enzvmol. 361, 1–33.CrossRefGoogle Scholar
  19. 19.
    Girard, S. and Clapham, D. (1994) Calcium signaling in oocytes. Methods Cell Biol. 40, 274–284.Google Scholar
  20. 20.
    Marchant, J. S. and Parker, I. (2001) Xenopus tropicalis oocytes as an advantageous model system for the study of intracellular Ca2+ signaling. Br. J. Pharmacol. 132, 1396–1410.CrossRefPubMedGoogle Scholar
  21. 21.
    Axon Instruments Inc. (1993) The Axon Guide for Electrophysiological and Biophysics Laboratory Techniques, Axon Instruments Inc., Foster City, CA.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2006

Authors and Affiliations

  • Sheila L. Dargan
    • 1
  • Angelo Demuro
    • 1
  • Ian Parker
    • 2
  1. 1.Department of Neurobiology and Behavior, McGaugh HallUniversity of California IrvineIrvine
  2. 2.Department of Neurobiology and BehaviorUniversity of California IrvineIrvine

Personalised recommendations