Advertisement

Studying Fertilization in Cell-Free Extracts

Focusing on Membrane/Lipid Raft Functions and Proteomics
  • Ken-ichi Sato
  • Ken-ichi Yoshino
  • Alexander A. Tokmakov
  • Tetsushi Iwasaki
  • Kazuyoshi Yonezawa
  • Yasuo Fukami
Part of the Methods in Molecular Biology™ book series (MIMB, volume 322)

Abstract

Xenopus oocytes, eggs, and embryos serve as an ideal model system to study several aspects of animal development (e.g., gametogenesis, fertilization, embryogenesis, and organogenesis). In particular, the Xenopus system has been extensively employed not only as a “living cell” system but also as a “cell-free” or “reconstitutional” system. In this chapter, we describe a protocol for studying the molecular mechanism of egg fertilization with the use of cell-free extracts and membrane/lipid rafts prepared from unfertilized, metaphase II-arrested Xenopus eggs. By using this experimental system, we have reconstituted a series of signal transduction events associated with egg fertilization, such as sperm-egg membrane interaction, activation of Src tyrosine kinase and phospholipase Cγ, production of inositol trisphosphate, transient calcium release, and cell cycle transition. This type of reconstitutional system may allow us to perform focused proteomics (e.g., rafts) as well as global protein analysis (i.e., whole egg proteome) of fertilization in a cell-free manner. As one of these proteomics approaches, we provide a protocol for molecular identification of Xenopus egg raft proteins using mass spectrometry and database mining.

Key Words

Calcium release cell-free system CSF extract egg egg activation embryogenesis expressed sequence tag fertilization gametogenesis in vitro reconstitution mass spectrometry proteome proteomics raft reproduction signal transduction sperm Src tyrosine phosphorylation unigene 

References

  1. 1.
    Masui, Y. (2000) The elusive cytostatic factor in the animal egg. Nat. Rev. Mol. Cell. Biol. 1, 228–232.CrossRefPubMedGoogle Scholar
  2. 2.
    Iwao, Y. (2000) Mechanisms of egg activation and polyspermy block in amphibians and comparative aspects with fertilization in other vertebrates. Zool. Sci. 17, 699–709.CrossRefGoogle Scholar
  3. 3.
    Yanagimachi, R. (1994) Fertilization, in The Physiology of Reproduction (Knobil, E. and Neill, J. D., eds.), Raven, New York, pp. 189–317.Google Scholar
  4. 4.
    Runft, L. L., Jaffe, L. A., and Mehlmann, L. M. (2002) Egg activation at fertilization: where it all begins. Dev. Biol. 245, 237–254.CrossRefPubMedGoogle Scholar
  5. 5.
    Sato, K., Iwasaki, T., Hirahara, S., Nishihira, Y., and Fukami, Y. (2004) Molecular dissection of egg fertilization signaling with the aid of tyrosine kinase-specific inhibitor and activator strategies. Biochim. Biophys. Ada 1697, 103–121.Google Scholar
  6. 6.
    Sato, K., Aoto, M., Mori, K., et al. (1996) Purification and characterization of a src-related p57 protein-tyrosine kinase from Xenopus oocytes. J. Biol. Chem. 271, 13,250–13,257.CrossRefPubMedGoogle Scholar
  7. 7.
    Sato, K., Iwao, Y., Fujimura, T., et al. (1999) Evidence for the involvement of a Srcrelated tyrosine kinase in Xenopus egg activation. Dev. Biol. 209, 308–320.CrossRefPubMedGoogle Scholar
  8. 8.
    Sato, K., Tokmakov, A. A., Iwasaki, T., and Fukami, Y. (2000) Tyrosine kinase-dependent activation of phospholipase Cy is required for calcium transient in Xenopus egg fertilization. Dev. Biol. 224, 453–469.CrossRefPubMedGoogle Scholar
  9. 9.
    Sato, K., Ogawa, K., Iwasaki, T., Tokmakov, A. A., and Fukami, Y. (2001) Hydrogen peroxide induces Src family tyrosine kinase-dependent activation of Xenopus eggs. Dev. Growth Differ. 43, 55–72.CrossRefPubMedGoogle Scholar
  10. 10.
    Sato, K., Iwasaki, T., Ogawa, K., Konishi, M., Tokmakov, A. A., and Fukami, Y. (2002) Low density detergent-insoluble membrane of Xenopus eggs: subcellular microdomain for tyrosine kinase signaling in fertilization. Development 129, 885–896.PubMedGoogle Scholar
  11. 11.
    Murray, A. W. (1991) Cell cycle extracts. Methods Cell Biol. 36, 581–605.CrossRefPubMedGoogle Scholar
  12. 12.
    Pappin, D. J. C, Hojrup, P., and Bleasby, A. J. (1993) Rapid identification of proteins by peptide-mass fingerprinting. Curr. Biol. 3, 327–332CrossRefPubMedGoogle Scholar
  13. 13.
    James, P., Quadroni, M., Carafoli, E., and Gonnet, G. (1994) Protein identification in DNA databases by peptide mass fingerprinting. Protein Sci. 3, 1347–1350.CrossRefPubMedGoogle Scholar
  14. 14.
    Eng, J. K., McCormack, A. L., and Yates, J. R., III (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 5, 976–989.CrossRefGoogle Scholar
  15. 15.
    Yates, J. R., III, Eng, J. K., and McCormack, A. L. (1995) Mining genomes: correlating tandem mass spectra of modified and unmodified peptides to sequences in nucleotide databases. Anal. Chem. 67, 3202–3210.CrossRefPubMedGoogle Scholar
  16. 16.
    Neubauer, G., King, A., Rappsilber, J., et al. (1998) Mass spectrometry and EST-database searching allows characterization of the multi-protein spliceosome complex. Nat. Genet. 20, 46–50.CrossRefPubMedGoogle Scholar
  17. 17.
    Choudhary, J. S., Blackstock, W. P., Creasy, D. M., and Cottrell, J. S. (2001) Interrogating the human genome using uninterpreted mass spectrometry data. Proteomics 1, 651–667.CrossRefPubMedGoogle Scholar
  18. 18.
    Tokmakov, A. A., Sato, K., Iwasaki, T., and Fukami, Y. (2002) Src kinase induces calcium release in Xenopus egg extracts via PLCγ and IP3-dependent mechanism. Cell Calcium 32, 11–20.CrossRefPubMedGoogle Scholar
  19. 19.
    Sato, K., Tokmakov, A. A., He, C.-L., et al. (2003) Reconstitution of Src-dependent PLCγ phosphorylation and transient calcium release by using membrane rafts and cell-free extracts from Xenopus eggs. J. Biol. Chem. 278, 38,413–38,420.CrossRefPubMedGoogle Scholar
  20. 20.
    Sakakibara, K., Sato, K., Yoshino, K., et al. (2005) Molecular identification and characterization of Xenopus egg uroplakin III, an egg raft-associated transmembrane protein that is tyrosine-phosphorylated upon fertilization. J. Biol. Chem. 280, 15,029–15,037.CrossRefPubMedGoogle Scholar
  21. 21.
    Mahbub Hasan, A. K. M., Sato, K., Sakakibara, K., et al. (2005) Uroplakin III, a novel Src substrate in Xenopus egg rafts, is a target for sperm protease essential for fertilization. Dev. Biol. in press.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2006

Authors and Affiliations

  • Ken-ichi Sato
    • 1
  • Ken-ichi Yoshino
    • 2
    • 3
  • Alexander A. Tokmakov
    • 4
  • Tetsushi Iwasaki
    • 1
  • Kazuyoshi Yonezawa
    • 2
    • 3
  • Yasuo Fukami
    • 1
  1. 1.Research Center for Environmental GenomicsKobe UniversityKobeJapan
  2. 2.Biosignal Research CenterKobe UniversityKobe
  3. 3.CRESTJapan Science and Technology AgencyKawaguchiJapan
  4. 4.Genome Sciences CenterRIKEN Yokohama InstituteYokohamaJapan

Personalised recommendations