The Physiology of the Xenopus laevis Ovary

  • Melissa A. Rasar
  • Stephen R. Hammes
Part of the Methods in Molecular Biology™ book series (MIMB, volume 322)

Abstract

Xenopus laevis has been used for many decades to study oocyte development and maturation. The Xenopus oocytes’ large size, relative abundance, and clearly defined progression of physical characteristics from oogonia to eggs make them ideal for studying oogenesis. In addition, the ability of steroids to trigger Xenopus oocyte maturation in vitro has resulted in their extensive use for the study of the complexities of meiosis. Interestingly, steroid-induced maturation of Xenopus oocytes occurs completely independent of transcription; thus, this process serves as one of the few biologically relevant models of nongenomic steroid-mediated signaling. Finally, Xenopus oocytes appear to play a critical role in ovarian steroidogenesis, suggesting that the Xenopus ovary may serve as a novel system for studying steroidogenesis. Evidence indicates that many of the features defining Xenopus laevis oogenesis and maturation might also be occurring in mammals, further emphasizing the strength and relevance of Xenopus laevis as a model for ovarian development and function.

Key Words

Maturation oocyte ovary steroidogenesis vitellogenesis Xenopus 

References

  1. 1.
    Lofts, B. (1974) Reproduction, in Physiology of the Amphibia (Lofst, B., ed.), Academic Press, London, pp. 107–218.Google Scholar
  2. 2.
    Franchi, L. L. (1962) The structure of the ovary—vertebrates, in The Ovary (Zuckerman, S., ed.), Academic Press, New York, pp. 121–142.Google Scholar
  3. 3.
    Hausen, P. (1991) The Early Development of Xenopus laevis: An Atlas of the Histology, Springer-Verlag, Berlin.Google Scholar
  4. 4.
    Browne, C. L., Wiley, H. S., and Dumont, J. N. (1979) Oocyte-follicle cell gap junctions in Xenopus laevis and the effects of gonadotropin on their permeability. Science 203, 182–183.CrossRefPubMedGoogle Scholar
  5. 5.
    Dumont, J. N. (1972) Oogenesis in Xenopus laevis (Daudin). I. Stages of oocyte development in laboratory maintained animals. J. Morphol. 136, 153–179.CrossRefPubMedGoogle Scholar
  6. 6.
    Scheer, U. (1973) Nuclear pore flow rate of ribosomal RNA and chain growth rate of its precursor during oogenesis of Xenopus laevis. Dev. Biol. 30, 13–28.CrossRefPubMedGoogle Scholar
  7. 7.
    Follett, B. K. and Redshaw, M. R. (1974) The physiology of the vitellogenesis, in Physiology of the Amphibia (Lofts, B., ed.), Academic Press, London, pp. 219–308.Google Scholar
  8. 8.
    Taylor, M. A. and Smith, L. D. (1985) Quantitative changes in protein synthesis during oogenesis in Xenopus laevis. Dev. Biol. 110, 230–237.CrossRefPubMedGoogle Scholar
  9. 9.
    Dolecki, G. J. and Smith, L. D. (1979) Poly(A)+ RNA metabolism during oogenesis in Xenopus laevis. Dev. Biol. 69, 217–236.CrossRefPubMedGoogle Scholar
  10. 10.
    de Moor, C. H. and Richter, J. D. (1997) The Mos pathway regulates cytoplasmic polyadenylation in Xenopus oocytes. Mol. Cell Biol. 17, 6419–6426.PubMedGoogle Scholar
  11. 11.
    Mendez, R., Hake, L. E., Andresson, T., Littlepage, L. E., Ruderman, J. V., and Richter, J. D. (2000) Phosphorylation of CPE binding factor by Eg2 regulates translation of c-mos mRNA. Nature 404, 302–307.CrossRefPubMedGoogle Scholar
  12. 12.
    Johnson, J., Canning, J., Kaneko, T., Pru, J. K., and Tilly, J. L. (2004) Germline stem cells and follicular renewal in the postnatal mammalian ovary. Nature 428, 145–150.CrossRefPubMedGoogle Scholar
  13. 13.
    Keem, K., Smith, L. D., Wallace, R. A., and Wolf, D. (1979) Growth rate of oocytes in laboratory maintained Xenopus laevis. Gamete Res. 2, 125–135.CrossRefGoogle Scholar
  14. 14.
    Smith, C. L. (1955) Reproduction in female amphibia. Mem. Soc. Endocrinol. 4, 39–56.Google Scholar
  15. 15.
    Dumont, J. N. and Brummett, A. R. (1978) Oogenesis in Xenopus laevis (Daudin). V. Relationships between developing oocytes and their investing follicular tissues. J. Morphol. 155, 73–98.CrossRefPubMedGoogle Scholar
  16. 16.
    Kemp, N. E. (1958) Electron microscopy of growing oocytes of Rana piienps. J. Biophys. Biochem. Cytol. 2, 281–292.CrossRefGoogle Scholar
  17. 17.
    Alfert, M. (1954) Comparison and structure of giant chromosomes. Internal Rev. Cytol. 3, 131–175.CrossRefGoogle Scholar
  18. 18.
    Hill, R. S. and Macgregor, H. C. (1980) The development of lampbrush chromosome-type transcription in the early diplotene oocytes of Xenopus laevis an electron-microscope analysis. J. Cell Sci. 44, 87–101.PubMedGoogle Scholar
  19. 19.
    Davidson, E. H. (1986) Gene Activity in Early Development, 3rd ed., Academic Press, New York.Google Scholar
  20. 20.
    Tourte, M., Mignotte, F., and Mounolou, J. C. (1981) Organization and replication activity of the mitochondrial mass of oogonia and previtellogenic oocytes in Xenopus laevis. Dev. Growth Differ. 23, 9–21.CrossRefGoogle Scholar
  21. 21.
    Danilchik, M. V. and Gerhart, J. C. (1987) Differentiation of the animal-vegetal axis in Xenopus laevis oocytes. I. Polarized intracellular translocation of platelets establishes the yolk gradient. Dev. Biol. 122, 101–112.CrossRefPubMedGoogle Scholar
  22. 22.
    Wylie, C. C, Brown, D., Godsave, S. F., Quarmby, J., and Heasman, J. (1985) The cytoskeleton of Xenopus oocytes and its role in development. J. Embryol. Exp. Morphol. 89Suppl, 1–15.PubMedGoogle Scholar
  23. 23.
    Coggins, L. W. (1973) An ultrastructural and radioautographic study of early oogenesis in the toad Xenopus laevis. J. Cell Sci. 12, 71–93.PubMedGoogle Scholar
  24. 24.
    Follett, B. K., Nicholls, T. J., and Redshaw, M. R. (1968) The vitellogenic response in the South African clawed toad (Xenopus laevis Daudin). J. Cell Physiol. 72,Suppl 1, 91+.Google Scholar
  25. 25.
    Barth, L. G. and Barth, L. J. (1951) The relation of adenosine triphosphate to yolk utilization in the frog’s egg. J. Exp. Zool. 116, 99–122.CrossRefGoogle Scholar
  26. 26.
    Redshaw, M. R., Follett, B. K., and Nichollis, T. J. (1969) Comparative effects of the oestrogens and other steroid hormones on serum lipids and proteins in Xenopus laevis Daudin. J. Endocrinol. 43, 47–53.CrossRefPubMedGoogle Scholar
  27. 27.
    Wallace, R. A., Jared, D. W., and Nelson, B. L. (1970) Protein incorporation by isolated amphibian oocytes. I. Preliminary studies. J. Exp. Zool. 175, 259–269.CrossRefPubMedGoogle Scholar
  28. 28.
    Wallace, R. A., Nickol, J. M, Ho, T., and Jared, D. W. (1972) Studies on amphibian yolk. X. The relative roles of autosynthetic and heterosynthetic processes during yolk protein assembly by isolated oocytes. Dev. Biol. 29, 255–272.CrossRefPubMedGoogle Scholar
  29. 29.
    Wiley, H. S. and Dumont, J. N. (1978) Stimulation of vitellogenin uptake in stage IV Xenopus oocytes by treatment with chorionic gonadotropin in vitro. Biol. Reprod. 18, 762–771.CrossRefPubMedGoogle Scholar
  30. 30.
    Dodd, J. M. (1960) Gonadal and gonadotrophic hormones in lower vertebrates, in Marshall’s Physiology of Reproduction (Parkes, A. S., ed.), Longmans Green, London, pp. 417–582.Google Scholar
  31. 31.
    Barr, W. A. (1968) Patterns of ovarian activity, in Perspective in Endocrinology: Hormones in the Lives of Lower Vertebrates (Jorgensen, E. J. W. Ba. C. B., ed.), Academic Press, New York, pp. 164–238.Google Scholar
  32. 32.
    Lutz, L. B., Cole, L. M., Gupta, M. K., Kwist, K. W., Auchus, R. J., and Hammes, S. R. (2001) Evidence that androgens are the primary steroids produced by Xenopus laevis ovaries and may signal through the classical androgen receptor to promote oocyte maturation. Proc. Natl. head. Sci. U. S. A. 98, 13,728–13,733.CrossRefGoogle Scholar
  33. 33.
    Ozon, R. (1967) [In vitro synthesis of steroid hormones in the testicle and ovary of the urodele amphibian Pleurodeles waltlii Michah]. Gen. Comp. Endocrinol. 8, 214–227.CrossRefPubMedGoogle Scholar
  34. 34.
    Redshaw, M. R. and Nicholls, T. J. (1971) Oestrogen biosynthesis by ovarian tissue of the South African clawed toad, Xenopus laevis Daudin. Gen. Comp. Endocrinol. 16, 85–96.CrossRefPubMedGoogle Scholar
  35. 35.
    Yang, W. H., Lutz, L. B., and Hammes, S. R. (2003) Xenopus laevis ovarian CYP17 is a highly potent enzyme expressed exclusively in oocytes. Evidence that oocytes play a critical role in Xenopus ovarian androgen production. J. Biol. Chem. 278, 9552–9559.CrossRefPubMedGoogle Scholar
  36. 36.
    Rugh, R. (1935) Ovulation in the frog. I. Pituitary relations in induced ovulation. J. Exp. Zool. 71, 149–162.CrossRefGoogle Scholar
  37. 37.
    Heilbrunn, L. V., Daugherty, K., and Wilbur, K. M. (1939) Initiation of maturation in the frog egg. Physiol. Zool. 12, 97–100.Google Scholar
  38. 38.
    Ryan, F. J. and Grant, R. (1940) The stimulus for maturation and for ovulation of the frog’s egg. Physiol. Zool. 13, 383–390.Google Scholar
  39. 39.
    Smith, L. D., Ecker, R. E., and Subtelny, S. (1968) In vitro induction of physiological maturation in Rana pipiens oocytes removed from their ovarian follicles. Dev. Biol. 17, 627–643.CrossRefPubMedGoogle Scholar
  40. 40.
    Le Goascogne, C, Sananes, N., Gouezou, M., and Baulieu, E. E. (1985) Testosterone-induced meiotic maturation of Xenopus laevis oocytes: evidence for an early effect in the synergistic action of insulin. Dev. Biol. 109, 9–14.CrossRefPubMedGoogle Scholar
  41. 41.
    Mailer, J. L. and Krebs, E. G. (1980) Regulation of oocyte maturation. Curr. Top. Cell Regul. 16,271–311.Google Scholar
  42. 42.
    Lutz, L. B., Kim, B., Jahani, D., and Hammes, S. R. (2000) G protein βγ subunits inhibit nongenomic progesterone-induced signaling and maturation in Xenopus laevis oocytes. Evidence for a release of inhibition mechanism for cell cycle progression. J. Biol. Chem. 275, 41,512–41,520.CrossRefPubMedGoogle Scholar
  43. 43.
    Sheng, Y., Tiberi, M., Booth, R. A., Ma, C, and Liu, X. J. (2001) Regulation of Xenopus oocyte meiosis arrest by G protein βγ subunits. Curr. Biol. 11, 405–416.CrossRefPubMedGoogle Scholar
  44. 44.
    Gill, A., Jamnongjit, M., and Hammes, S. R. (2004) Androgens promote maturation and signaling in mouse oocytes independent of transcription: a release of inhibition model for mammalian oocyte meiosis. Mol. Endocrinol. 18, 97–104.CrossRefPubMedGoogle Scholar
  45. 45.
    Conti, M., Andersen, C. B., Richard, F., et al. (2002) Role of cyclic nucleotide signaling in oocyte maturation. Mol. Cell Endocrinol. 187, 153–139.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2006

Authors and Affiliations

  • Melissa A. Rasar
    • 1
  • Stephen R. Hammes
    • 1
  1. 1.Department of Internal Medicine, Division of Endocrinology and metabolism; Department of PharmacologyUniversity of Texas Southwestern Medical Center at DallasDallas

Personalised recommendations