Chromatin Immunoprecipitation for Studying Transcriptional Regulation in Xenopus Oocytes and Tadpoles

  • David Stewart
  • Akihiro Tomita
  • Yun-Bo Shi
  • Jiemin Wong
Part of the Methods in Molecular Biology™ book series (MIMB, volume 322)


Understanding the accurate temporal and spatial regulation of gene expression during development requires knowledge of the spectrum of transcription factors and cofactors involved and their functional interplay with chromatin. Chromatin immunoprecipitation (ChIP) has become a powerful technique that allows us to do so. A typical ChIP assay involves (1) treating cells or tissues with formaldehyde to rapidly crosslink chromatin-associated proteins to DNA, (2) shearing chromatin by sonication into small fragments, (3) immunoprecipitation of the proteins of interest, (4) reversal of crosslinking, and (5) quantitating the specific associated DNA sequences by PCR. Here we present and discuss the protocols we have developed over the years for ChIP assays using Xenopus oocytes and tadpole tissues as experimental materials.

Key Words

Chromatin immunoprecipitation (ChIP) tadpole thyroid hormone receptor transcription Xenopus oocyte 


  1. 1.
    Berger, S. L. (2002) Histone modifications in transcriptional regulation. Curr. Opin. Genet. Dev. 12, 142–148.CrossRefPubMedGoogle Scholar
  2. 2.
    Fischle, W., Wang, Y., and Allis, C. D. (2003) Histone and chromatin cross-talk. Curr. Opin. Cell. Biol. 15, 172–183.CrossRefPubMedGoogle Scholar
  3. 3.
    Levine, M. and Tjian, R. (2003) Transcription regulation and animal diversity. Nature 424, 147–151.CrossRefPubMedGoogle Scholar
  4. 4.
    Li, E. (2002) Chromatin modification and epigenetic reprogramming in mammalian development. Nat. Rev. Genet. 3, 662–673.CrossRefPubMedGoogle Scholar
  5. 5.
    Kuo, M. H. and Allis, C. D. (1999) In vivo cross-linking and immunoprecipitation for studying dynamic protein:DNA associations in a chromatin environment. Methods 19, 425–433.CrossRefPubMedGoogle Scholar
  6. 6.
    Orlando, V. (2000) Mapping chromosomal proteins in vivo by formaldehyde-crosslinked-chromatin immunoprecipitation. Trends Biochem. Sci. 25, 99–104.CrossRefPubMedGoogle Scholar
  7. 7.
    Jackson, V. (1978) Studies on histone organization in the nucleosome using formaldehyde as a reversible cross-linking agent. Cell 15, 945–954.CrossRefPubMedGoogle Scholar
  8. 8.
    Jackson, V. and Chalkley, R. (1981) A new method for the isolation of replicative chromatin: selective deposition of histone on both new and old DNA. Cell 23, 121–134.CrossRefPubMedGoogle Scholar
  9. 9.
    Li, J., Lin, Q., Wang, W., Wade, P., and Wong, J. (2002) Specific targeting and constitutive association of histone deacetylase complexes during transcriptional repression. Genes Dev. 16, 687–692.CrossRefPubMedGoogle Scholar
  10. 10.
    Li, J., Lin, Q., Yoon, H. G., Huang, Z. Q., Strahl, B. D., Allis, C. D., and Wong, J. (2002) Involvement of histone methylation and phosphorylation in regulation of transcription by thyroid hormone receptor. Mol. Cell Biol. 22, 5688–5697.CrossRefPubMedGoogle Scholar
  11. 11.
    Huang, Z. Q., Li, J., Sachs, L. M., Cole, P. A., and Wong, J. (2003) A role for cofactor-cofactor and cofactor-histone interactions in targeting p300, SWI/SNF and mediator for transcription. EMBO J. 22, 2146–2155.CrossRefPubMedGoogle Scholar
  12. 12.
    Sachs, L. M. and Shi, Y. B. (2000) Targeted chromatin binding and histone acetylation in vivo by thyroid hormone receptor during amphibian development. Proc. Natl. Acad. Sci USA 97, 13,138–13,143.CrossRefPubMedGoogle Scholar
  13. 13.
    Tomita, A., Buchholz, D. R., and Shi, Y. B. (2004) Recruitment of N-CoR/SMRT-TBLR1 corepressor complex by unliganded thyroid hormone receptor for gene repression during frog development. Mol. Cell Biol. 24, 3337–3346.CrossRefPubMedGoogle Scholar
  14. 14.
    Buchholz, D. R., Hsia, S. C., Fu, L., and Shi, Y. B. (2003) A dominant-negative thyroid hormone receptor blocks amphibian metamorphosis by retaining corepressors at target genes. Mol. Cell Biol. 23, 6750–6758.CrossRefPubMedGoogle Scholar
  15. 15.
    Wang, H. C., Beer, B., Sassano, D., Blume, A. J., and Ziai, M. R. (1991) Gene expression in Xenopus oocytes. Int. J. Biochem. 23, 271–276.CrossRefPubMedGoogle Scholar
  16. 16.
    Wong, J., Shi, Y. B., and Wolffe, A. P. (1995) A role for nucleosome assembly in both silencing and activation of the Xenopus TR β A gene by the thyroid hormone receptor. Genes Dev. 9, 2696–2711.CrossRefPubMedGoogle Scholar
  17. 17.
    Wolffe, A. P., Wong, J., Li, Q., Levi, B. Z., and Shi, Y. B. (1997) Three steps in the regulation of transcription by the thyroid hormone receptor: establishment of a repressive chromatin structure, disruption of chromatin and transcriptional activation. Biochem. Soc. Trans. 25, 612–615.PubMedGoogle Scholar
  18. 18.
    Wong, J. (2002) Transcriptional regulation by thyroid hormone receptor in chromatin. Methods Mol. Biol. 202, 177–194.PubMedGoogle Scholar
  19. 19.
    Nieuwkoop, P. D. and Faber, J. (1956) Normal Table of Xenopus laevis. North Holland Publishing, Amsterdam, The Netherlands.Google Scholar
  20. 20.
    Wong, J. and Shi, Y. B. (1995) Coordinated regulation of and transcriptional activation by Xenopus thyroid hormone and retinoid X receptors. J. Biol. Chem. 270, 18,479–18,483.CrossRefPubMedGoogle Scholar
  21. 21.
    Sachs, L. M., Jones, P. L., Havis, E., Rouse, N., Demeneix, B. A., and Shi, Y. B. Nuclear receptor corepressor recruitment by unliganded thyroid hormone receptor in gene repression during Xenopus laevis development. Mol. Cell Biol. 22, 8527–8538.Google Scholar
  22. 22.
    De Robertis, E. M. and Mertz, J. E. (1977) Coupled transcription-translation of DNA injected into Xenopus oocytes. Cell 12, 175–182.CrossRefPubMedGoogle Scholar
  23. 23.
    Mertz, J. E. and Gurdon, J. B. (1977) Purified DNAs are transcribed after microinjection into Xenopus oocytes. Proc. Natl. Acad. Sci. USA 74, 1502–1506.CrossRefPubMedGoogle Scholar
  24. 24.
    Wang, H. C., Beer, B., Sassano, D., Blume, A. J., and Ziai, M. R. (1991) Gene expression in Xenopus oocytes. Int. J. Biochem. 23, 271–276.CrossRefPubMedGoogle Scholar
  25. 25.
    Etkin, L. D. (1982) Analysis of the mechanisms involved in gene regulation and cell differentiation by microinjection of purified genes and somatic cell nuclei into amphibian oocytes and eggs. Differentiation 21, 149–159.CrossRefPubMedGoogle Scholar
  26. 26.
    Laskey, R. A., Mills, A. D., and Morris, N. R. (1977) Assembly of SV40 chromatin in a cell-free system from Xenopus eggs. Cell 10, 237–243.CrossRefPubMedGoogle Scholar
  27. 27.
    Wickens, M. P., Woo, S., O’Malley, B. W., and Gurdon, J. B. (1980) Expression of a chicken chromosomal ovalbumin gene injected into frog oocyte nuclei. Nature 285, 628–634.CrossRefPubMedGoogle Scholar
  28. 28.
    Almouzni, G. and Wolffe, A. P. (1993) Replication-coupled chromatin assembly is required for the repression of basal transcription in vivo. Genes Dev. 7, 2033–2047.CrossRefPubMedGoogle Scholar
  29. 29.
    Wu, M. and Gerhart, J. Raising Xenopus in the laboratory. (1991) Methods Cell Biol. 36, 3–18.CrossRefPubMedGoogle Scholar
  30. 30.
    Smith, L. D., Xu, W. L., and Varnold, R. L. Oogenesis and oocyte isolation. (1991) Methods Cell Biol. 36, 45–60.CrossRefPubMedGoogle Scholar
  31. 31.
    Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., Struhl, K. (2000) Current Protocols in Molecular Biology. John Wiley & Sons, Inc., Hoboken, NJ.Google Scholar
  32. 32.
    Dodd, M. H. I. and Dodd, J. M. (1976) The biology of metamorphosis, in Physiology of the Amphibia (Lofts, B., ed.), Academic Press, New York, pp. 185–223.Google Scholar
  33. 33.
    Shi, Y. B., Sachs, L. M., Jones, P., Li, Q., and Ishizuya-Oka, A. (1998) Thyroid hormone regulation of Xenopus laevis metamorphosis: functions of thyroid hormone receptors and roles of extracellular matrix remodeling. Wound Repair Regen. 6, 314–322.CrossRefPubMedGoogle Scholar
  34. 34.
    Kay, B. K. (1991) Xenopus laevis practical uses in cell and molecular biology. Injections of oocytes and embryos. Methods Cell Biol. 36, 663–669.CrossRefPubMedGoogle Scholar
  35. 35.
    Ranjan, M., Wong, J., and Shi, Y. B. (1994) Transcriptional repression of Xenopus TR β gene is mediated by a thyroid hormone response element located near the start site. J. Biol. Chem. 269, 24,699–24,705.PubMedGoogle Scholar
  36. 36.
    Furlow, J. D. and Brown, D. D. (1999) In vitro and in vivo analysis of the regulation of a transcription factor gene by thyroid hormone during Xenopus laevis metamorphosis. Mol. Endocrinol. 13, 2076–2089.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2006

Authors and Affiliations

  • David Stewart
    • 1
  • Akihiro Tomita
    • 2
  • Yun-Bo Shi
    • 2
  • Jiemin Wong
    • 1
  1. 1.Department of Molecular and Cellular BiologyBaylor College of MedicineHouston
  2. 2.Section on Molecular Morphogenesis, Laboratory of Gene Regulation and DevelopmentNational Institute of Child Health and Human Disease, National Institutes of HealthBethesda

Personalised recommendations