Advertisement

Microtransplantation of Nigral Dopamine Neurons

A Step-by-Step Recipe
  • Guido Nikkhah
  • Christian Winkler
  • Alexandra Rödter
  • Madjid Samii
Part of the Neuromethods book series (NM, volume 36)

Abstract

The cell suspension grafting procedure, as originally described by (1983), has become the standard protocol for the implantation of fetal neuronal cell suspensions to deep brain nuclei. Its major advantages, compared to the earlier studies of transplanting solid pieces of fetal tissue into cortical cavities overlying the caudate-putamen (CPU) or lateral ventricle (Stenevi et al., 1976; Björklund et al., 1979), have been the ability to graft to intraparenchymal target sites with less trauma and high stereotactic accuracy, and to manipulate the cells prior to implantation. It has become the standard technique for the preparation and implantation, not only of dopaminergic (DA-ergic), but also of noradrenergic, cholinergic, serotonergic, and γ-aminobutyric aid (GABA)-ergic graft tissue since then (Björklund and Dunnett, 1992; see also Dunnett and Björklund, this volume). For dopamine (DA)-rich transplants, usually the ventral mesencephalon (VM) of embryonic day 14–15 (E14–E15) rat fetuses are prepared by means of mechanical and enzymatic dissociation (Björklund et al., 1983; see also Barker and Dunnett, this volume). However, only 8–10% of these cells are DA neurons (Nikkhah et al., 1993b): The majority were GABA-ergic and other non-DA neuronal and glial precursor cells.

Keywords

Graft Survival Glass Capillary Glial Fibrillary Acidic Protein Expression Ventral Mesencephalon Hamilton Microsyringe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abrous, D. N., Shaltot, A., Torres, E. M. and Dunnett, S. B. (1993) Dopamine-rich grafts in the neostriatum and/or nucleus accumbens: effects on drug-induced behaviours and skilled paw-reaching. Neuroscience 53, 187–197.PubMedCrossRefGoogle Scholar
  2. Barker, R., Dunnett, S. B., Faissner, A., and Fawcett, J. W. (1996) Time course of loss of dopaminergic neurons and the gliotic reaction surrounding grafts of embryonic mesencephalon to the striatum. Exp. Neurol. 141, 79–93.PubMedCrossRefGoogle Scholar
  3. Bentlage, C., Nikkhah, G., Cunningham, M., and Björklund, A. (1999) Reformation of the nigrostriatal pathway by fetal dopaminergic micrografts into the substantia nigra is critically influenced by the age of the host. Exp. Neurol., in press.Google Scholar
  4. Björklund, A. (1993) Better cells for brain repair. Nature 362, 414.PubMedCrossRefGoogle Scholar
  5. Björklund, A., and Dunnett, S. B. (1992) Neural transplantation in adult rats, in Neural Transplantation. A Practical Approach (Dunnett, S. B. and Björklund, A. eds.), Oxford University Press, Oxford, pp. 57–78.Google Scholar
  6. Björklund, A. and Stenevi, U. (1979) Reconstruction of the nigrostriatal dopamine pathway by intracerebral nigral transplants. Brain Res. 177, 555–560.PubMedCrossRefGoogle Scholar
  7. Björklund, A., Dunnett, S. B., and Nikkhah, G. (1994) Nigral transplants in the rat Parkinson model: functional limitations and strategies to enhance nigrostriatal reconstruction, in Functional Neural Transplantation (Dunnett, S. B. and Björklund, A. eds.), Raven, New York, pp. 47–70.Google Scholar
  8. Björklund, A., Stenevi, U., Schmidt, R. H., Dunnett, S. B., and Gage, F. H. (1983) Intracerebral grafting of neuronal cell suspensions. I. Introduction and general methods of preparation. Acta Physiol. Scand. 522(Suppl), 1–7.Google Scholar
  9. Brandis, A., Kuder, H., Jödicke, A., Knappe, U., Samii, M., Schönmayr, R., Walter, G. F., and Nikkhah, G. (1998) Time-dependent expression of donor-and host-specific MHC class I and II antigens in allogeneic dopamine-rich macro-and micro-grafts. Acta Neuropathol. 95, 85–97.PubMedCrossRefGoogle Scholar
  10. Brook, G. A., Lawrence, J. M., and Raisman, G. (1993) Morphology and migration of cultured Schwann cells transplanted into the fimbria and hippocampus in adult rats. Glia 9, 292–304.PubMedCrossRefGoogle Scholar
  11. Brundin, P. and Björklund, A. (1987) Survival, growth and function of dopaminergic neurons grafted to the brain, in Neural Regeneration. Progress in Brain Research (Seil, F. J., Herbet, E., and Carlson, B. M., eds.), Elsevier, Amsterdam, pp. 293–308.CrossRefGoogle Scholar
  12. Brüstle, O. and McKay, R. D. (1996) Neuronal progenitors as tools for cell replacement in the nervous system. Curr. Opin. Neurobiol. 6, 688–695.PubMedCrossRefGoogle Scholar
  13. Brüstle, O., Maskos, U., and McKay, R. D. (1995) Host-guided migration allows targeted introduction of neurons into the embryonic brain. Neuron 15, 1275–1285.PubMedCrossRefGoogle Scholar
  14. Campbell, K., Olsson, M., and Björklund, A. (1995) Regional incorporation and site-specific differentiation of striatal precursors transplanted to the embryonic fore-brain ventricle. Neuron 15, 1259–1273.PubMedCrossRefGoogle Scholar
  15. Carder, R. K., Snyder, K. A., and Lund, R. D. (1987) Amphetamine-and stress-induced turning after nigral transplants in neonatally dopamine-depleted rats. Dev. Brain Res. 33, 315–318.CrossRefGoogle Scholar
  16. Carpenter, M., Winkler, C., Fricker, R. A., Emerich, D., Wong, S. C., Greco, C., Chen, E., Chu, Y., Kordower, J., Messing, A., Björklund, A., and Hammang, J. P. (1997) Generation and transplantation of EGF-responsive neural stem cells derived from GFAP-hNGF transgenic mice. Exp. Neurol. 148, 187–204.PubMedCrossRefGoogle Scholar
  17. Cenci, M. A., Campbell, K., and Björklund, A. (1993) Neuropeptide messenger RNA expression in the 6-hydroxydopamine-lesioned rat striatum reinnervated by fetal dopaminergic transplants: differential effects of the grafts on preproenkephalin, preprotachykinin and prodynorphin messenger RNA levels. Neuroscience 57, 275–296.PubMedCrossRefGoogle Scholar
  18. Cunningham, M. G., Nikkhah, G., and McKay, R. D. G. (1993) Grafting immortalized hippocampal cells into the brain of the adult and the newborn rat. Neuroprotocols 3, 260–272.CrossRefGoogle Scholar
  19. Davies, S. J. A., Field, P. M., and Raisman, G. (1993) Long fibre growth by axons of embryonic mouse hippocampal neurons microtransplanted into the adult rat fimbria. Eur. J. Neurosci. 5, 95–106.PubMedCrossRefGoogle Scholar
  20. Davies, S. J., Fitch, M. T., Memberg, S. P., Hall, A. K., Raisman, G., and Silver, J. (1997) Regeneration of adult axons in white matter tracts of the central nervous system. Nature 390, 680–683.PubMedGoogle Scholar
  21. Deacon, T., Schumacher, J., Dinsmore, J., Thomas, C., Palmer, P., Kott, S., Edge, A., Penney, D., Kassissieh, S., Dempsey, P., and Isacson, O. (1997) Histological evidence of fetal pig neural cell survival after transplantation into a patient with Parkinson’s disease. Nat. Med. 3, 350–353.PubMedCrossRefGoogle Scholar
  22. Doucet, G., Brundin, P., Descarries, L., and Björklund, A. (1990) Effect of prior dopamine denervation on survival and fiber outgrowth from intrastriatal fetal mesencephalic grafts. Eur. J. Neurosci. 2, 279–290.PubMedCrossRefGoogle Scholar
  23. Dunnett, S. B. and Björklund, A. (1994) Mechanisms of function of neural grafts in the injured brain, in Functional Neural Transplantation (Dunnett, S. B. and Björklund, A. eds.), Raven, New York, pp. 531–567.Google Scholar
  24. Dunnett, S. B., Whishaw, I. Q., Rogers, D. C., and Jones, G. H. (1987) Dopamine-rich grafts ameliorate whole body motor asymmetry and sensory neglect but not independent limb use in rats with 6-hydroxydopamine lesions. Brain Res. 415, 63–78.PubMedCrossRefGoogle Scholar
  25. Emmett, C. J., Jaques, B. W., and Seeley, P. J. (1990) Microtransplantation of neural cells into adult rat brain. Neuroscience 38, 213–222.PubMedCrossRefGoogle Scholar
  26. Freeman, T. B., Olanow, C. W., Hauser, R. A., Nauert, G. M., Smith, D. A., Borlongan, C. V., Sanberg, P. R., Holt, D. A., Kordower, J. H., Vingerhoets, F. J. G., Snow, B. J., Calne, D., and Gauger, L. L. (1995) Bilateral fetal nigral transplantation into the postcommissural putamen in Parkinson’s disease. Ann. Neurol. 38, 379–388.PubMedCrossRefGoogle Scholar
  27. Fricker, R. A., Carpenter, M. K., Winkler, C., Greco, C., Gates, M. A., and Björklund, A. (1999) Site-specific migration and neuronal differentiation of human neural progenitor cells after transplantation in the adult brain, submitted.Google Scholar
  28. Hauser, R. A., Freeman, T. B., Snow, B. J., Nauert, M., Gauger, L., Kordower, J. H., and Olanow, C. W. (1999) Long-term evaluation of bilateral fetal nigral transplantation in Parkinson disease. Arch. Neurol. 56, 179–187.PubMedCrossRefGoogle Scholar
  29. Herman, J. P., Abrous, D. N., and Le, M. M. (1991) Anatomical and behavioral comparison of unilateral dopamine-rich grafts implanted into the striatum of neonatal and adult rats. Neuroscience 40, 465–475.PubMedCrossRefGoogle Scholar
  30. Herman, J. P., Choulli, K., Geffard, M., Nadaud, D., Taghzouti, K., and Le Moal, M. (1986) Reinnervation of the nucleus accumbens and frontal cortex of the rat by dopaminergic grafts and effects on hoarding behavior. Brain Res. 372, 210–216.PubMedCrossRefGoogle Scholar
  31. Kordower, J. H., Chen, E. Y., Winkler, C., Fricker, R., Charles, V., Messing, A., Mufson, E. J., Wong, S. C., Rosenstein, J. M., Björklund, A., Emerich, D. F., Hammang, J., and Carpenter, M. K. (1997) Grafts of EGF-responsive neural stem cells derived from GFAP-hNGF transgenic mice: trophic and tropic effects in a rodent model of Huntington’s disease. J. Comp. Neurol. 387, 96–113.PubMedCrossRefGoogle Scholar
  32. Kordower, J. H., Rosenstein, J. M., Collier, T. C., Burke, M. A., Chen, E.-Y., Li, J. M., Martel, L., Levey, A. E., Mufson, E. J., Freeman, T. B., and Olanow, C. W. (1996) Functional fetal nigral grafts in Parkinson’s disease: chemoanatomic, ultrastructural, and metabolic studies. J. Comp. Neurol. 370, 203–230.PubMedCrossRefGoogle Scholar
  33. Leanza, G., Nikkhah, G., Nilsson, O. G., Wiley, R. G., and Björklund, A. (1996) Extensive reinnervation of the hippocampus by embryonic basal forebrain cholinergic neurons grafted into the septum of neonatal rats with selective cholinergic lesions. J. Comp. Neurol. 373, 355–370.PubMedCrossRefGoogle Scholar
  34. Li, Y. and Raisman, G. (1993) Long axon growth from embryonic neurons transplanted into myelinated tracts of the adult rat spinal cord. Brain Res 629, 115–127.PubMedCrossRefGoogle Scholar
  35. Lindvall, O. (1994) Neural transplantation in Parkinson’s disease, in Functional Neural Transplantation (Dunnett, S. B. and Björklund, A. eds.), Raven, New York, pp. 103–138.Google Scholar
  36. Lindvall, O. (1998) Update on fetal transplantation: the Swedish experience. Mov. Disord. 13(Suppl), 83–87.PubMedGoogle Scholar
  37. Löscher, W., Ebert, U., Lehmann, H., Rosenthal, C., and Nikkhah, G. (1998) Seizure suppression in kindling epilepsy by grafts of fetal gabaergic neurons in rat substantia nigra. J. Neurosci. Res. 51, 196–209.PubMedCrossRefGoogle Scholar
  38. Madrazo, I., Leon, V., Torres, C., Del Carmen Aguilera, M., Varela, G., Alvarez, F., Fraga, A., Drucker-Colin, R., Ostrosky, F., Skurovich, M., and Franco, R. (1988) Transplantation of fetal substantia nigra and adrenal medulla to the caudate nucleus in two patients with Parkinson’s disease. N. Engl. J. Med. 318, 51.PubMedGoogle Scholar
  39. Mendez, I. and Hong, M. (1997) Reconstruction of the striato-nigro-striatal circuitry by simultaneous double dopaminergic grafts: a tracer study using fluorogold and horseradish peroxidase. Brain Res 778, 194–205.PubMedCrossRefGoogle Scholar
  40. Mendez, I., Damasio, S., and Hong, M. (1996) Reconstruction of the nigrostriatal pathway by simultaneous intrastriatal and intranigral dopaminergic transplants. J. Neurosci. 16, 7216–7227.PubMedGoogle Scholar
  41. Molina, H., Quinones, R., Alvarez, L., Galarraga, J., Piedra, J., Suárez, C., Rachid, M., Garcia, J. C., Perry, T. L., Santana, A., Carmenate, H., Macias, R., Torres, O., Rojas, M. J., Cordova, F. and Munoz, J. L. (1991) Transplantation of human fetal mesencephalic tissue in caudate nucleus as treatment for Parkinson’s disease: the Cuban experience, in Intracerebral Transplantation in Movement Disorders (Lindvall, O., Björklund, A., and Widner, H., eds.), Elsevier, Amsterdam, pp. 99–110.Google Scholar
  42. Nikkhah, G. and Samii, M. (1998) Principles of neural transplantation in the central nervous system, in Minimally Invasive Techniques for Neurosurgery (Hellwig, D. and Bauer, B. L., eds.), Springer, Heidelberg, pp. 257–266.Google Scholar
  43. Nikkhah, G., Bentlage, C., Cunningham, M. G., and Björklund, A. (1994a) Intranigral fetal dopamine grafts induce behavioral compensation in the rat Parkinson model. J. Neurosci. 14, 3449–3461.PubMedGoogle Scholar
  44. Nikkhah, G., Cunningham, M. G., Cenci, M. A., McKay, R., and Björklund, A. (1995b) Dopaminergic microtransplants into the substantia nigra of neonatal rats with bilateral 6-OHDA lesions. I. Evidence for anatomical reconstruction of the nigrostriatal pathway. J. Neurosci 15, 3548–3561.PubMedGoogle Scholar
  45. Nikkhah, G., Cunningham, M. G., Jödicke, A., Knappe, U., and Björklund, A. (1994b) Improved graft survival and striatal reinnervation by microtransplantation of fetal nigral cell suspensions in the rat Parkinson model. Brain Research 633, 133–143.PubMedCrossRefGoogle Scholar
  46. Nikkhah, G., Cunningham, M. G., McKay, R., and Björklund, A. (1995c) Dopaminergic microtransplants into the substantia nigra of neonatal rats with bilateral 6-OHDA lesions. II. Transplant-induced behavioral recovery. J. Neurosci. 15, 3562–3570.PubMedGoogle Scholar
  47. Nikkhah, G., Duan, W.-M., Knappe, U., Jödicke, A., and Björklund, A. (1993a) Restoration of complex sensorimotor behavior and skilled forelimb use by a modified nigral cell suspension transplantation approach in the rat Parkinson model. Neuroscience 56, 33–43.PubMedCrossRefGoogle Scholar
  48. Nikkhah, G., Eberhard, J., Olsson, M., and Björklund, A. (1995a) Preservation of fetal ventral mesencephalic cells by cool storage: in vitro viability and TH-positive neuron survival after microtransplantation to the striatum. Brain Res. 687, 22–34.PubMedCrossRefGoogle Scholar
  49. Nikkhah, G., Odin, P., Smits, A., Tingström, A., Othberg, A., Brundin, P., Funa, K., and Lindvall, O. (1993b) Platelet-derived growth factor promotes survival of rat and human mesencephalic dopaminergic neurons in culture. Exp. Brain Res. 92, 516–523.PubMedCrossRefGoogle Scholar
  50. Nikkhah, G., Olsson, M., Eberhard, J., Bentlage, C., Cunningham, M. G., and Björklund, A. (1994c) Microtransplantation approach for cell suspension grafting in the rat Parkinson model. A detailed account of the methodology. Neuroscience 63, 57–72.PubMedCrossRefGoogle Scholar
  51. Nikkhah, G., Rosenthal, C., Falkenstein, G., and Samii, M. (1998) Dopaminergic graft-induced long-term recovery of complex sensorimotor behaviors in a rat model of Parkinson’s disease. Zentrbl. Neurochir. 59, 97–103.Google Scholar
  52. Olanow, C. W., Kordower, J. H., and Freeman, T. B. (1996) Fetal nigral transplantation as a therapy for Parkinson’s disease. TINS 19, 102–109.PubMedGoogle Scholar
  53. Olsson, M., Bentlage, C., Wictorin, K., Campbell, K., and Björklund, A. (1997) Extensive migration and target innervation by striatal precursors after grafting into the neonatal striatum. Neuroscience 79, 57–78.PubMedCrossRefGoogle Scholar
  54. Olsson, M., Bjerregaard, K., Winkler, C., Gates, M., Björklund, A., and Campbell, K. (1998) Incorporation of mouse neural progenitors transplanted into the rat embryonic forebrain is developmentally regulated and dependent on regional and adhesive properties. Eur. J. Neurosci. 10, 71–85.PubMedCrossRefGoogle Scholar
  55. Olsson, M., Nikkhah, G., Bentlage, C., and Björklund, A. (1995) Forelimb akinesia in the rat Parkinson model: differential effects of dopamine agonists and nigral transplants as assessed by a new stepping test. J. Neurosci. 15, 3863–3875.PubMedGoogle Scholar
  56. Rioux, L., Gaudin, D. P., Bui, L. K., Gregoire, L., DiPaolo, T., and Bedard, P. J. (1991) Correlation of functional recovery after a 6-hydroxydopamine lesion with survival of grafted fetal neurons and release of dopamine in the striatum of the rat. Neuroscience 40, 123–131.PubMedCrossRefGoogle Scholar
  57. Rödter, A., Winkler, C., Samii, M., and Nikkhah, G. (1999) Complex sensorimotor behavioral changes after terminal striatal 6-OHDA lesion and transplantation of dopaminergic embryonic micrografts. Cell Transplant., in press.Google Scholar
  58. Sauer, H., Frodl, E. M., Kupsch, A., ten Bruggencate, G., and Oertel, W. H. (1992) Cryopreservation, survival and function of intrastriatal fetal mesencephalic grafts in a rat model of Parkinson’s disease. Exp. Brain Res. 90, 54–62.PubMedCrossRefGoogle Scholar
  59. Schmidt, R. H., Björklund, A., Stenevi, U., Dunnett, S. B., and Gage, F. H. (1983) Intracerebral grafting of neuronal cell suspensions. III. Activity of intrastriatal nigral suspension implants as assessed by measurements of dopamine synthesis and metabolism. Acta Physiol. Scand. 522(Suppl), 19–28.Google Scholar
  60. Sinclair, S. R., Svendsen, C. N., Torres, E. M., Martin, D., Fawcett, J. W., and Dunnett, S. B. (1996) GDNF enhances dopaminergic cell survival and fibre outgrowth in embryonic nigral grafts. NeuroReport 7, 2547–2552.PubMedCrossRefGoogle Scholar
  61. Snyder-Keller, A. (1991) Striatal c-fos induction by drugs and stress in neonatally dopamine-depleted rats given nigral transplants: importance of NMD A activation and relevance to sensitization phenomena. Exp. Neurol. 113,155–165.PubMedCrossRefGoogle Scholar
  62. Snyder-Keller, A. M., Carder, R. K., and Lund, R. D. (1989) Development of dopamine innervation and turning behavior in dopamine-depleted infant rats receiving unilateral nigral transplants. Neuroscience 30, 779–794.PubMedCrossRefGoogle Scholar
  63. Stenevi, U., Björklund, A., and Svendgaard, N. (1976) Transplantation of central and peripheral monoamine neurons to the adult rat brain: techniques and conditions for survival. Brain Res. 114, 1–20.PubMedCrossRefGoogle Scholar
  64. Stichel, C. C., Lips, K., Wunderlich, G., and Muller, H. W. (1996) Reconstruction of transected postcommissural fornix in adult rat by Schwann cell suspension grafts. Exp. Neurol. 140, 21–36.PubMedCrossRefGoogle Scholar
  65. Studer, L., Tabar, V., and McKay, R. D. G. (1998) Transplantation of expanded mesencephalic precursors leads to recovery in parkinsonian rats. Nature Neurosci. 1, 290–295.PubMedCrossRefGoogle Scholar
  66. Wenning, G. K., Odin, P., Morrish, P., Rehncrona, S., Widner, H., Brundin, P., Rothwell, J. C., Brown, R., Gustavii, B., Hagell, P., Jahanshahi, M., Sawle, G., Björklund, A., Brooks, D. J., Marsden, D., Quinn, N. P., and Lindvall, O. (1997) Short-and long-term survival and function of unilateral intrastriatal dopaminergic grafts in Parkinson’s disease. Ann. Neurol. 42, 95–107.PubMedCrossRefGoogle Scholar
  67. Winkler, C., Fricker, R. A., Gates, M. A., Olsson, M., Hammang, J. P., Carpenter, M. K., and Björklund, A. (1998) Incorporation and glial differentiation of mouse EGF-responsive neural progenitor cells after transplantation into the embryonic rat brain. Mol. Cell. Neurosci. 11, 99–116.PubMedCrossRefGoogle Scholar
  68. Winkler, C., Bentlage, C., Nikkhah, G., Samii, M., and Björklund, A. (1999) Intranigral transplants of GABA-rich striatal tissue induce behavioral recovery in the rat parkinson model and promote the effects obtained by intrastriatal dopaminergic transplants. Exp. Neurol. 155, 165–186.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2000

Authors and Affiliations

  • Guido Nikkhah
    • 1
  • Christian Winkler
    • 1
  • Alexandra Rödter
    • 1
  • Madjid Samii
    • 1
  1. 1.Neurosurgical ClinicNordstadt HospitalHanoverGermany

Personalised recommendations