Advertisement

Polymerase Chain Reaction

  • Ralph Rapley
Protocol
  • 1.2k Downloads
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

In general, advances in biological and biochemical research are brought about by tmprovements and refinement of methods in current use. There are times, however, when a technique is developed that revolutionizes a particular field of research The polymerase chain reaction, or PCR, developed at the Cetus Corporation in 1985 is one such example The technique enables large amounts of DNA to be produced from very small amounts of starting material and mimics the basic mechamsm of DNA replication and the manner in which it is carried out. The PCR was first described in 1985 and is a technique resulting in near exponential enzymatic amplification of DNA to a level easily detected by conventional methods, such as gel electrophoresis (2).

Keywords

Exonuclease Activity Amino Acid Sequence Information Nucleotide Sequencing Method Flank Vector Sequence Derive Nucleotide Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Saiki, R. K., Scharf, S. J., Faloona, F., Mullis, K. B., Horn, G. T., Erlich, H. A., and Amheim, N. (1985) Enzymatic amplification of 8 globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230, 1350–1354.PubMedCrossRefGoogle Scholar
  2. 2.
    Paabo, S. (1989) Ancient DNA extraction characterisation molecular cloning and amplification. Proc. Natl. Acad. Sci. USA 86, 1939–1943.PubMedCrossRefGoogle Scholar
  3. 3.
    Rychlik, W. (1994) New algorithm for determining primer efficiency in PCR and sequencing. J. NIH Res. 6,78.Google Scholar
  4. 4.
    Knoth, K., Roberds, S., Poteet, C., and Tamkun, M. (1988) Highly degenerate inosine containing primers specifically amplify rare cDNA using the polymerase chain reaction.Nucleic Acids Res. 16,932.CrossRefGoogle Scholar
  5. 5.
    Reischl, U. and Kochanowski, B. (1995) Quantitative PCR A survey of the present technology. Mol. Biotechnol. 3,55–71.PubMedCrossRefGoogle Scholar
  6. 6.
    Eckert, K. A. and Kunkel, T. A. (1990) High fidelity DNA synthesis by the Thermus aquaticus DNA polymerase. Nucleic Acids Res. l8 3739–3744.CrossRefGoogle Scholar
  7. 7.
    Myers, T. W. and Gelfand, D. H. (1991) Biochemistry 30,7661.PubMedCrossRefGoogle Scholar
  8. 8.
    Cheng, S., Cheng, S-Y., Gravitt, P., and Respess, R. (1994) Long PCR. Nature 369, 684–685.PubMedCrossRefGoogle Scholar
  9. 9.
    Hung, T, Mak, K, and Fong, K (1990) A speclficlty enhancer for the polymerase cham reactlon Nucleic Aczds Res 18, 1666CrossRefGoogle Scholar
  10. 10.
    Chou, Q, Russell, M, Birch, D E, Raymond, J and Bloch, W (1992) Prevention of pre-PCR mlsprlming and primer dlmerlzatlon improves low copy number amphficatlon Nuclezc Aczds Res 20, 1717–1723CrossRefGoogle Scholar
  11. 11.
    Chamberlam, J S, Gibbs, R A, Ranier, J E, Nguyen, P N, and Caskey, C T (1988)Deletion screening of the Duchenne muscular dystrophy locus via multiplex DNA ampltficatlon Nuclerc Acids Res 16, 11,141-l 1,156Google Scholar
  12. 12.
    Marmo, J, yatt, P, Flood, S J, and McBride, L (1997) A TaqMan multiplex PCR mesenger RNA assay Clzn Chem Google Scholar
  13. 13.
    Kwok, S and Hlguchl, R (1989) Avoiding false posltlves with PCR Nature 339,237–238PubMedCrossRefGoogle Scholar
  14. 14.
    Longo, N, Bermnger, N S, and Hartley, J L (1990) Use of uracll N-glycolyase to control carry-over contammatlon in polymerase chain reaction Gene 93, 125–128PubMedCrossRefGoogle Scholar
  15. 15.
    Kawasaki, E S (1990) Amphficatlon of RNA, in PCR Protocols A Guide to Methods & Applrcatzons (Inms, A, Gelfand, D, Smnsky, J J, and White, T J, eds ), Academic, San Diego, CA, pp 21–27Google Scholar
  16. 16.
    Liang, P and Pardee, A B (1992) Differenyial display of eukaryotic messenger RNA by means of the polymerase cham reaction Science 257, 967–971PubMedCrossRefGoogle Scholar
  17. 17.
    Bevan, I S, Rapley, R, and Walker, M R (1992) Sequencing of PCR-amplified DNA PCR Methods Appl 1 (4), 222–227Google Scholar
  18. 18.
    Gyllenstem, U B and Erhch, H A (1988) Generation of single stranded DNA by the polymerase chain reaction and Its apphcatlon to direct sequencing of the HLA-DQA locus Proc Natl Acad Scr USA 85,7652–7656CrossRefGoogle Scholar
  19. 19.
    McConlogue, L, Brow, M A D, and Inms, M A (1988) Structure-mdependent DNA amplification by PCR using 7-deaza-2′deoxyguanosme Nucleic Acids Res 16, 9869PubMedCrossRefGoogle Scholar
  20. 20.
    Rapley, R (1996) Methods zn Molecular Bzology, vol 65 PCR Sequenczng Protocols Humana, Totowa, NJGoogle Scholar
  21. 21.
    Slatko, B E (1996) Thermal cycle dldeoxy DNA sequencing MoZ Bzotech 6,311–322CrossRefGoogle Scholar
  22. 22.
    Mitchell, L G and Meml, C R (1989) Affinity generation of single stranded DNA for dldeoxy sequencing following the polymerase chain reaction Anal Bzochem 178,239–242CrossRefGoogle Scholar
  23. 23.
    Stoflet, E S, Koeberl, D D, Sarker, G, and Sommer, S S (1988) Genomlc amphficatlon with transcript sequencing Science 239,491–494PubMedCrossRefGoogle Scholar
  24. 24.
    White, B A, ed (1996) Methods zn Molecular Bzology vol 67 PCR Clonzng Protocols From Molecular Clonrng to Genetic Engzneerzng Humana, Totowa, NJGoogle Scholar
  25. 25.
    Mead, D A, Pey, N K, Herrnstadt, C, Marc& R A, and Smith, L in (1991) A umversal method for the direct cloning of PCR amplified nucleic acid Bzo/Technology 9, 657–663CrossRefGoogle Scholar
  26. 26.
    Hlguchl, R, Krummel, B, and Salki, R K (1988) A general method of in vitro preparatton and specific mutagenesis of DNA fragments study of protem and DNA mteractlons Nucleic Acids Res 16, 7351–7367CrossRefGoogle Scholar
  27. 27.
    Sarker, G and Sommer, S S (1990) The megaprlmer method of site directed mutagenesls Bzotechnzques 8,404–407Google Scholar
  28. 28.
    Clackson, T and Winter, G (1989) Sticky feet directed mutagenesis and its appllcatlons to swapping antibody domains Nucleic Aczds Res 17, 10,163-10,170Google Scholar
  29. 29.
    Cotton, R G H (1992) Detection of mutations in DNA Current Opzn Bzotechnol 3,24–30CrossRefGoogle Scholar
  30. 30.
    Newton, C R, Graham, A, Heptmstall, L E, Powell, S J, Summers, C, Kalsheker, N, Smith, J C, and Markham, A F (1989) Analysis of any point mutation in DNA The amplification refractory mutation system Nucleic Aczds Res 17,2503–2516CrossRefGoogle Scholar
  31. 31.
    Wartell, R in, Hosseml, S H, and Moran, C P Jr (1990) Detecting base pair substltutlons in DNA fragments by temperature gradlent gel electrophoresls Nuclezc Acrds Res 18, 2699–2705CrossRefGoogle Scholar
  32. 32.
    Dockhorn-Dwormczak, B, Dwormczak, B, Brommelkamp, L, Bulles, J, Horst, J, and Backer, W (1991) Non-lsotoplc detection of single strand conformatlonal polymorphism (PCR-SSCP) a rapid and sensltlve technique in the diagnosis of phenylketonurla Nuclei Aczds Res 19,2500–2505CrossRefGoogle Scholar
  33. 33.
    Ochman, H, Gerber, S A, and Hartl, D L (1988) Genetic apphcatlons of an inverse polymerase chain reaction Genetzcs 120,621–625Google Scholar
  34. 34.
    Gosden, J, ed (1997) Methods zn Molecular Biology, vol 71 PRINS and In Sztu PCR Protocols Humana, Totowa, NJGoogle Scholar
  35. 35.
    Wmn-Deen, E S (1997) Automation of molecular genetic methods DNA ampllficatlon techniques J Urn Lzgand Assay 19,21–26Google Scholar

Copyright information

© Humana Press Inc , Totowa, NJ. 1998

Authors and Affiliations

  • Ralph Rapley
    • 1
  1. 1.University of HertfordshzreUK

Personalised recommendations