Characteristics of Proteins and Peptides In Situ

An Overview
  • P. J. Thomas
Part of the Biological Methods book series (BM)


In my contributions to this book I shall consider proteins and peptides as functional biological units, rather than as chemical compounds. I shall try to show that, from the point of view of a biologist, proteins should not be considered as individual entities, but rather as components of complex interacting cyclical control systems that involve not only multitudes of other proteins, but also non-protein-components of cells and of the extracellular environment. I have in mind, for example, the phospholipids of the cell membrane, nonproteinacious chemical messengers (steroids and neurotransmitters), and drugs and toxins of low molecular weight.


Nerve Terminal Anterior Pituitary Cyclic Nucleotide Guanylate Cyclase Peptide Hormone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    W. Y. Cheung, Science 207, 19–27 (1980).PubMedCrossRefGoogle Scholar
  2. 2.
    J. Kallos, Nature 265, 705–710 (1977).PubMedCrossRefGoogle Scholar
  3. 3.
    H. Tamir, A. Klein, and M. M. Rapport, J. Neurochem. 26, 871–878 (1976).PubMedCrossRefGoogle Scholar
  4. 4.
    M. D. Gershon, K. P. Liu, S. E. Karpiak, and H. Tamir, J, Neuroscience 3, 1901–1911 (1983).Google Scholar
  5. 5.
    P. Englebienne, Molec. Asp. med. 7, 313–396 (1984).CrossRefGoogle Scholar
  6. 6.
    L. L. Iverson, Trends Neurosci. 6, 293–294 (1983).CrossRefGoogle Scholar
  7. 7.
    L. W. Swanson, Trends Neurosci. 6, 294–295 (1983).CrossRefGoogle Scholar
  8. 8.
    M. E. Hadley, Endocrinology Prenctice Hall, New Jersey (1984).Google Scholar
  9. 9.
    P. J. Thomas, Molec. Asp. Med. 5, 1–61 (1982).CrossRefGoogle Scholar
  10. 10.
    A. Peters, S. L. Palay, and H. de F. Webster, The Fine Structure of the Nervous System W. B. Saunders, Philadelphia, London, Toronto (1976), p. 36.Google Scholar
  11. 11.
    A. Goth, Medical Pkarrnacology Mosby, St. Louis, Toronto, London, p. 155–122 (1981).Google Scholar
  12. 12.
    P. Greengard, Nature 260, 101–108 (1976).PubMedCrossRefGoogle Scholar
  13. 13.
    L. L. Iverson, Biockem. Pkurmucol. 23, 1927–1233 (1974).Google Scholar
  14. 14.
    E. E. Muller, G. Nistico, and U. Scapagnini, Neurotrunsmitter and Anterior Pituitary Function Academic, London (1977), pp. 102–115.Google Scholar
  15. 15.
    K. Krvjevic, Pkysiol. Rev. 54, 418–540 (1974).Google Scholar
  16. 16.
    J. M. Lundberg and T. Hokfelt, Trends Neurosci. 6, 325–332 (1983).CrossRefGoogle Scholar
  17. 17.
    J. Parascandol, in Towards Understanding Receptors (J. W. Lamble, ed.) Elsevier/North Holland (1981), pp. 1–8.Google Scholar
  18. 18.
    P. J. Thomas, J. Endocrinul. 57, 333–359 (1973).CrossRefGoogle Scholar
  19. 19.
    K. Sterling, N. Eng. J. Med. 300, 117–123; 173-177 (1979).Google Scholar
  20. 20.
    M. R. Haussler, M. R. Hughes, T. McCain, and S. A. Pike, in Molecular Endocrinology (I. MacIntyre and M. Szelke, eds.) Elsevier/North Holland (1977), pp. 101–116.Google Scholar
  21. 21.
    W. J. King and G. L. Green, Nature 307, 745–747 (1984).PubMedCrossRefGoogle Scholar
  22. 22.
    W. V. Welshons, M. E. Lieberman, and J. Gorski, Nature 307, 747–749 (1984).PubMedCrossRefGoogle Scholar
  23. 23.
    D. Colquhoun, in Towards Understanding Receptors (J. W. Lamble, ed.) Elsevierl/North Holland (1981), pp. 17–27.Google Scholar
  24. 24.
    E. W. Sutherland, T. W. Rall, and T. Menon, J. Biol. Chem. 237, 1220–1222 (1962).PubMedGoogle Scholar
  25. 25.
    R. Lim, K. Mitsunobu, and W. K. P. Li, Exp. Cell Res. 79, 243–246 (1973).PubMedCrossRefGoogle Scholar
  26. 26.
    D. L. Schapiro, Nature 241, 203–204 (1973).CrossRefGoogle Scholar
  27. 27.
    Y. H. Erlich, E. G. Brunngraber, P. K. Sinha, and K. N. Prasad, Nature 265, 238–240 (1977).CrossRefGoogle Scholar
  28. 28.
    R. Siete, J. Luciano-Vuillet Leonetti, and M. Vio, Brain Res. 124, 41–51 (1977).CrossRefGoogle Scholar
  29. 29.
    J. Zwiller, C. Goridis, J. Ciesielski-Treska, and P. Maridel, J. Neurochem. 29, 273–278 (1977).PubMedCrossRefGoogle Scholar
  30. 30.
    T. W. Stone, D. A. Taylor, and F. E. Bloom, Science 187, 845–846 (1975).PubMedCrossRefGoogle Scholar
  31. 32.
    R. J. Coffey, E. M. Hadden, C. Lopez, and J. W. Hadden, Adv. Cyclic Nucleotide Res. 9, 661–676 (1978).PubMedGoogle Scholar
  32. 32.
    W. G. George, G. M. Rodgers, and L. A. White, Adv. CycIic Nucleotide Res. 9, 517–523 (1978).Google Scholar
  33. 33.
    W. J. Thomson and W. W. Appleman, Biochemistry 10, 311–316, (1971).CrossRefGoogle Scholar
  34. 34.
    M. Williams and R. Rodnight, Prog. Neurobiof. 8, 183–240.Google Scholar
  35. 35.
    A. L. Lehninger, Biochemistry Worth Publishers, New York (1975).Google Scholar
  36. 36.
    A. Peters, S. L. Palay, and H. de F. Webster, The Fine Structure of the Nervous System Saunders, Philadelphia, London, Toronto (1976), pp. 107–112.Google Scholar
  37. 37.
    B. Pickering, Essays in Biochemistry 14, 45–81 (1978).PubMedGoogle Scholar
  38. 38.
    J-L. Popot and J-P. Changeux, Physiol. Rev. 64, 1162–1238 (1984).PubMedGoogle Scholar
  39. 39.
    M. L. Barbaccia, D. M. Chung, and E. Costa, in Regulatory Peptides; From Molecular Biology fo Function (M. Costa and E. Trabuchi, eds.) Raven, New York (1982), pp. 511–518.Google Scholar
  40. 40.
    J. Havrankova, M. Brownstein, and J. Roth, diabetologica 20, 268–273 (1981).CrossRefGoogle Scholar
  41. 41.
    J. Havrankovaa, D. Schnechel, J. Roth, and M. Brownstein, Proc. Natl. Acad. Sci USA 73, 5737–5741 (1978).CrossRefGoogle Scholar
  42. 42.
    B. Bohus, Pharmacology 18, 113–122 (1979).PubMedCrossRefGoogle Scholar
  43. 43.
    D. De Weid, Trends Neurosci. 2, 79–82 (1979).CrossRefGoogle Scholar
  44. 44.
    J. M. Moeglan, A. Audibert, M. Timisit-Berthier, J. C. Oliveros, and M. K. Jandali, in Neuroendocrinology; Biological and Clinical Aspects (A. Pollen and R. M. MacLeod, eds.) Academic, London (1979), pp. 47–57.Google Scholar
  45. 45.
    B. S. McEwen, Trends Neurosci. 6, 22–26 (1985).Google Scholar
  46. 46.
    0. A. Amechi, P. J. Butterworth, and P. J. Thomas, Brain Res. 342, 158–161 (1985).PubMedCrossRefGoogle Scholar
  47. 47.
    C. Le Blond, R. Powell, G. Karkiulakis, S. Morris, and P. J. Thomas, J. Endocrinol. 95, 137–145 (1982).PubMedCrossRefGoogle Scholar
  48. 48.
    J-P Changeux and A. Danchin, Nature 264, 705–710 (1980).CrossRefGoogle Scholar
  49. 49.
    M. Hirata and J. Axelrod, J. Science 209, 1082–1087 (1980).CrossRefGoogle Scholar
  50. 50.
    M. J. Berridge, in Towards Understanding Receptors (J. W. Lamble, ed.) 1, 122–131 (1981).Google Scholar
  51. 51.
    A. Biegon and B. S. McEwen, J. Neuroscience 2, 199–202 (1982).Google Scholar
  52. 52.
    G. J. Blackwell, R. Carnuccio, M. Di Rosa, R. J. Flower, L. Parente, and P. Perisco, Nature 287, 147–149 (1980).PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1988

Authors and Affiliations

  • P. J. Thomas
    • 1
  1. 1.Department of Pharmacology, Chelsea CollegeUniversity of LondonLondonUK

Personalised recommendations