Conformational Stability Denaturation and Renaturation

  • Felix Franks
Part of the Biological Methods book series (BM)


In order to perform its biological function, a protein must possess the correct configuration, i.e., it must be in its native state, with the correct secondary, tertiary, and, where applicable, quaternary structure. Under in vivo conditions, this is achieved on the ribosome during the synthesis of the protein. Any mistakes in the folding mechanism are then symptomatic of a pathological condition. Howver, under in vitro conditions of isolation, concentration, drying, and so on, changes may occur that will result in partial or complete inactivation. The protein is then said to be denatured. With the vast majority of proteins, the stability of the native (N) state, relative to the denatured (D) state, is highly marginal, amounting to no more than 60 kJlmo1, which is equivalent to the strength of only 3–4 hydrogen bonds (1). Yet, the native structure usually contains several hundred such bonds. From a biological point of view, this marginal stability is required so that proteins can be turned over rapidly, thus avoiding the buildup of, say, immunoglobulins or hormones in the serum. On the other hand, the labile nature of the native state presents problems for the processor who must avoid extremes of pH, ionic strength, temperature, shear, and so on during the various stages of the isolation and concentration process.


Protein Stability Sorbed Layer Carbamyl Phosphate Dilatational Modulus Guanidinium Hydrochloride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    R. H. Pain, in Characterization of Protein Conformation and Function (F. Franks, ed.) Symposium Press, London (1979), p. 19.Google Scholar
  2. 2.
    R. Lumry, R. Biltonen, and J. F. Brand& Biopolymers 4, 917–944 (1966)PubMedCrossRefGoogle Scholar
  3. 3.
    J. F. Brandts and R. Lumry, J. Phys. Chem. 67, 1484–1494 (1963).CrossRefGoogle Scholar
  4. 4.
    J. F. Brandts, J. Am. Chem. Sot. 86, 4291–4301 (1964)CrossRefGoogle Scholar
  5. 5.
    C. N. Pace, Crit. Rev. Biochem. 3, 1–43 (1975).CrossRefGoogle Scholar
  6. 6.
    C. Tanford, Adv. Protein Chem. 24, 1–95 (1970).PubMedCrossRefGoogle Scholar
  7. 7.
    W. Pfeil and P. L. Privalov, Biophys. Chem. 4, 23–40 (1976).PubMedCrossRefGoogle Scholar
  8. 8.
    P. L. Privalov and N. N. Kechinashvili, J. Mol. BioE. 86, 665–684 (1974).CrossRefGoogle Scholar
  9. 9.
    P. L. Privalov and E I. Tiktopulo, Bzopolymer 9, 127–139 (1970).CrossRefGoogle Scholar
  10. 10.
    J. G. Brandts, J. Fu, and J. H. Nordin, in The Frozen Cell (G. E. W. Wolstenholme and M. O′Connor, eds.) J & A Churchill, London (1970), pp. 189–208.Google Scholar
  11. 11.
    F. Franks, Biophysics and Biochemistry at Low Temperatures, Cambridge University Press, Cambridge (1985)Google Scholar
  12. 12.
    S. N. Timasheff, in PhysicaI Aspects of Protein Interactions (N. Catsimpoolas, ed.) Elsevier North-Holland, New York (1978), pp. 219–273.Google Scholar
  13. 13.
    M. A. Lauffer, in Physical Aspects of Protein Interactions (N. Catsimpoolas, ed.) Elsevier North Holland, New York (1978) pp. 115–170.Google Scholar
  14. 14.
    W. L. Dixon, F. Franks, and T. apRees, Phytochanistry 20, 969–972 (1981).CrossRefGoogle Scholar
  15. 15.
    J. Schellman, in Protein Folding (R. Jaenicke, ed.) Elsevier North-Holland, Amsterdam (1980), p. 331.Google Scholar
  16. 16.
    H. Nojima, A. Ikai, and H. Noda, J. Mol. Biol. 116, 429–442 (1977).PubMedCrossRefGoogle Scholar
  17. 17.
    S. A. Hawley and R. M. Mitchell, Biochemistry 14, 3257–3264 (1975).PubMedCrossRefGoogle Scholar
  18. 18.
    A. Zipp and W. Kauzmann, Biochemistry 12, 4217–4228 (1973).PubMedCrossRefGoogle Scholar
  19. 19.
    S. E. Charm and B. L. Wong, Biotech. Bioeng. 12, 1103–1109 (1970).CrossRefGoogle Scholar
  20. 20.
    S. E. Charm and B. L. Wong, Science 170, 466–468 (1970).PubMedCrossRefGoogle Scholar
  21. 21.
    S. E. Charm and B. L. Wong, Biorheology 12, 275–278 (1975)PubMedGoogle Scholar
  22. 22.
    F. Franks and D. Eagland, Crit Rev. Biochem. 3, 165–219 (1975).CrossRefGoogle Scholar
  23. 23.
    W. Pfeil and I,. L. Privalov, in Biochemical Thermodynamics (M. N. Jones, ed.) Elsevier, Amsterdam (1979), p. 75.Google Scholar
  24. 24.
    V. V. Filimonov, W. Pfeil, T. N. Tsalkova, and P. L. Privalov, Biophys. Chem. 8, 117–122 (1978).PubMedCrossRefGoogle Scholar
  25. 25.
    W. Pfeil and P. L. Privalov, Biophys. Chem. 4, 41–50 (1976).PubMedCrossRefGoogle Scholar
  26. 26.
    P. L. Privalov, Adv. Protein. Chem. 33, 167–241 (1979).PubMedCrossRefGoogle Scholar
  27. 27.
    P. H. von Hippel and A. Hamabata, J. Mechanochem. Cell Motil. 2, 127–138 (1973).Google Scholar
  28. 28.
    P. H. von Hippel and K. Y. Wong, J. Bill. Chem. 240, 3909–3923 (1965).Google Scholar
  29. 29.
    S. Y. Gerlsma, J. Biol. Chem. 243, 957 (1968).PubMedGoogle Scholar
  30. 30.
    B. Robson, in Water Biophysics (F. Franks, S. F. Mathias, eds.) John Wiley & Sons, Chichester (1982), p. 62.Google Scholar
  31. 31.
    F. Franks and J. E. Desnoyers, Water Sci. Rev. 1, 171–232 (1985).CrossRefGoogle Scholar
  32. 32.
    J. F. Brandts and L. Hunt, J. Am. Chem. Sot. 89, 4826–4838 (1967).CrossRefGoogle Scholar
  33. 33.
    M. Kugimiya and C. C. Bigelow, Can. J. Biochem. 51, 581–585 (1973).PubMedCrossRefGoogle Scholar
  34. 34.
    R. N. Sharma and C. C. Bigelow, J. Mol. Biol. 88, 247–257 (1974).PubMedCrossRefGoogle Scholar
  35. 35.
    D. E. Graham and M. C. Phillips, J. Colloid Interface Sci. 70, 403–414 (1979).CrossRefGoogle Scholar
  36. 36.
    D. E. Graham and M. C. Phillips, J. CoZloid Interface Sci. 70, 415–439 (1979).CrossRefGoogle Scholar
  37. 37.
    D. E. Graham and M. C. Phrllrps, J. Colloid Interface Sci. 76, 227–250 (1980).CrossRefGoogle Scholar
  38. 38.
    J. F. Brandts, H. R. Halvorson, and M. Brennan, Biochemistry 14, 4953–4963 (1975).PubMedCrossRefGoogle Scholar
  39. 39.
    P. E. Bock and C. Frieden, Trends Biochem. Sci. May 100–103 (1978).Google Scholar
  40. 40.
    P. E. Bock and C. Frieden, J. Biol. Chem. 251, 5630–5643 (1976); Trends. Brochem. SIX May l00-103 (1978).PubMedGoogle Scholar
  41. 41.
    P. Douzou, Cryobiochemistry Academic, London (1977).Google Scholar
  42. 42.
    T. E. Creighton, J. Mol. Biol. 129, 235–264 (1979).PubMedCrossRefGoogle Scholar
  43. 43.
    M. Karplus, S. Andrew, and M. C. Ammon, Sci. Am. 254, 36 (1986).CrossRefGoogle Scholar

Copyright information

© The Humana Press Inc 1988

Authors and Affiliations

  • Felix Franks
    • 1
  1. 1.Department of Botany, Botany SchoolUniversity of Cambridge, Cambndge and Biopreseroation Division, Pafra Ltd.CambridgeUK

Personalised recommendations