Advertisement

Polypeptide Sequence Analysis Using Gas Chromatography-Mass Spectrometry

  • Henry C. Krutzsch
Protocol
Part of the Biological Methods book series (BM)

Abstract

Polypeptide sequence analyses have been carried out using a variety of chemical and enzymatic technologies. Although the most common is the Edman procedure, in many cases methodologies involving gas chromatography-mass spectrometry (GC-MS) may be the preferred route for these structure determinations. For example, a blocked polypeptide N-terminus is not a barrier to structure determinations as it is in the Edman technique. Also, Ser and Thr residues are always identifiable by GC-MS technologies, and C-terminal sequence determinations are as readily accessible as N-terminal analyses when GC-MS technologies are employed. In addition, unusual amino acid residues and posttranslational modifications to the polypeptide can be determined by GC-MS methodologies for sequence analysis.

Keywords

Dipeptidyl Peptidase Polypeptide Sequence Primary Amide Flash Heater Dipeptidyl Aminopeptidase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Krutzsch, H. C. (1983) Methods in Enzymology 91, 511–524.PubMedCrossRefGoogle Scholar
  2. 2.
    Krutzsch, H. C. and Pisano, J. J. (1977) Methods Enzymol. 47, 391–404.PubMedCrossRefGoogle Scholar
  3. 3.
    Krutzsch, H. C. and Pisano, J. J. (1978) Biochemistry 17, 2791–2797.PubMedCrossRefGoogle Scholar
  4. 4.
    Tondeuer, Yves, personal communication.Google Scholar
  5. 5.
    Kira, J. I., Deibler, G. E., Krutzsch, H. C., and Martenson, R. E. (1985) J. Neurochem. 44, 134–142.PubMedCrossRefGoogle Scholar
  6. 6.
    Fairwell, T., Krutzsch, H., Hempel, J., Jeffrey, J., and Jörnvall, H. (1984) FEBS Lett. 170, 281–289.PubMedCrossRefGoogle Scholar
  7. 7.
    Deibler, G. E., Martenson, R. E., Krutzsch, H. C., and Kies, M W. (1984) J. Neurochem. 43, 100–105.PubMedCrossRefGoogle Scholar
  8. 8.
    Rao, D. N., Rudikoff, S., Krutzsch, H., and Potter, M. (1979) Proc. Natl. Acad. Sci. USA 76, 2890–2894.PubMedCrossRefGoogle Scholar
  9. 9.
    Pawlita, M., Potter, M. and Rudikoff, S. (1982) J. Immunol. 129, 615–618.PubMedGoogle Scholar
  10. 10.
    Yarmush, M. L., Krutzsch, H. C., and Kindt, T. J. (1980) Mol. Immunol 17, 319–326.PubMedCrossRefGoogle Scholar
  11. 11.
    Henderson, L. E., Krutzsch, H. C., and Oroszlan, S. (1983) Proc. Natl Acad. Sci. USA 80, 339–343.PubMedCrossRefGoogle Scholar
  12. 12.
    Marasco, W. A., Phan, S. H., Krutzsch, H., Showell, H. J., Feltner, D. E., Nairn, R., Becker, E. L., and Ward, P. A. (1984) J. Biol. Chem. 259, 5430–5439.PubMedGoogle Scholar
  13. 13.
    Biemann, K. (1980) Biochemical Applications of Mass Spectrometry, Supp. I, 469–525.Google Scholar
  14. 14.
    Carr, S. A., Herlihy, W. C., and Biemann, K. (1981) Biomed. Mass Spectrom. 8, 51–61.CrossRefGoogle Scholar
  15. 15.
    Herlihy, W. C., Anderegg, R. J., and Biemann, K. (1981) Biomed. Mass Spectrom. 8, 62–69.PubMedCrossRefGoogle Scholar
  16. 16.
    Herlihy, W. C. and Biemann, K. (1981) Biomed. Mass Spectrom. 8, 70–77.CrossRefGoogle Scholar
  17. 17.
    Carr, S. A., Hauschka, P. V., and Biemann, K. (1981) J. Biol. Chem. 256, 9944–9950.PubMedGoogle Scholar
  18. 18.
    Kelley, J. A., Nau, H., Forster, J.-J., and Biemann, K. (1975) Biomed. Mass Spectrom. 2, 313–325.CrossRefGoogle Scholar
  19. 19.
    Haas, G. M., Nau, H., Biemann, K., Grahn, D. T., Ericsson, L. H., and Neurath, H. (1975) Biochemistry 14, 1334–1342.CrossRefGoogle Scholar
  20. 20.
    Samy, T. S. A., Hahm, K.-S., Modest, E. J., Lampman, G. W., Kentmann, H. T., Umezawa, H., Herlihy, W. C., Gibson, B. W., Carr, S. A., and Biemann, K. (1983) J. Biol Chem. 258, 183–191.PubMedGoogle Scholar
  21. 21.
    Nau, H. and Biemann, K. (1976) Anal. Biochem. 73, 154–174.PubMedCrossRefGoogle Scholar
  22. 22.
    Carr, S. A. and Biemann, K. (1980) Biomed. Mass Spectrom. 7, 172–178.PubMedCrossRefGoogle Scholar
  23. 23.
    Herlihy, W. C., Kidwell, D., Meeusen, B., and Biemann, K. (1981) Biochem. Biophys. Res. Comm. 102, 335–340.PubMedCrossRefGoogle Scholar
  24. 24.
    Hudson, G. and Biemann, K. (1976) Biochem. Biophys. Res. Comm. 71, 212–220.PubMedCrossRefGoogle Scholar
  25. 25.
    Khorana, H. G., Gerber, G. E., Herlihy, W. C., Gray, C. P., Anderegg, R. J., Nihei, K., and Biemann, K. (1979) Proc. Natl Acad. Sci. USA 76, 5046–5050.PubMedCrossRefGoogle Scholar
  26. 26.
    Herlihy, W. C., Royal, N. J., Biemann, K., Putney, S. D., and Schimmel, P. R. (1980) Proc. Natl Acad. Sci. USA 77, 6531–6535.PubMedCrossRefGoogle Scholar
  27. 27.
    Hoben, P., Royal, N., Cheung, A., Yamao, F., Biemann, K., and Soil, D. (1982) J. Biol Chem. 257, 11644–11650.PubMedGoogle Scholar

Copyright information

© The Humana Press Inc. 1986

Authors and Affiliations

  • Henry C. Krutzsch
    • 1
  1. 1.National Cancer InstituteBethesda

Personalised recommendations