Application of Sucrose Synthase in the Synthesis of Nucleotide Sugars and Saccharides

  • Astrid Zervosen
  • Lothar Elling
Part of the Methods in Biotechnology™ book series (MIBT, volume 10)

Abstract

The realization that the oligosaccharide moieties of glycoconjugates, such as glycoproteins and glycolipids, are involved in important intra- and intercellular of important oligosaccharide structures as tools in analytical and therapeutic studies (see refs. 1 and 2 for reviews). A number of efficient chemical procedures have been developed for the synthesis of the “glyco-” part (see refs. 3, 4, 5, 6, 7 for review). However, for the synthesis of a given saccharide structure, an individual strategy has to be set up comprising many laborious protection and deprotection steps for stereo-controlled synthesis, which finally results in only moderate overall yields. As an example, the synthesis of N-acetyllactosamine (LacNAc) involves 12 steps and needs 3 months of lab work (7). A scale-up of the chemical procedure often encounters environmental problems because all steps are carried out in organic solvents.

References

  1. 1.
    Rademacher, T. W., Parekh, R. B., and Dwek, R. A. (1988) Glycobiology. Annu. Rev. Biochem. 57, 785–838.PubMedCrossRefGoogle Scholar
  2. 2.
    Varki, A. (1993) Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3, 97–130.PubMedCrossRefGoogle Scholar
  3. 3.
    Paulsen, H. (1982) Advances in selective chemical synthesis of complex oligosaccharides. Angew. Chem. Int. Ed. Engl. 21, 155–173.CrossRefGoogle Scholar
  4. 4.
    Kondo, H., Aoki, S., Ichikawa, Y., Halcomb, R. L., Ritzen, H., and Wong, C.-H. (1994) Glycosyl phosphites as glycosylation reagents: scope and mechanism. J. Org. Chem. 59, 864–877.CrossRefGoogle Scholar
  5. 5.
    Schmidt, R. R. and Kinzy W. (1994) Anomeric-oxygen activation for glycoside synthesis. The trichloroacetimidate method. Adv. Carbohydr. Chem. Biochem. 50, 21–128.PubMedCrossRefGoogle Scholar
  6. 6.
    Garg, H. G., von dem Bruch, K., and Kunz, H. (1994) Developments in the synthesis of glycopeptides containing glycosyl L-asparagine, L-serine and L-threonine. Adv. Carbohydr. Chem. Biochem. 50, 277–310.PubMedCrossRefGoogle Scholar
  7. 7.
    Khan, S. H. and Hindsgaul, O. (1994) Chemical synthesis of oligosaccharides, in Frontiers in Molecular Biology, Molecular Glycobiology (Fukuda M. and Hindsgaul O., eds.), IRL, Oxford, pp. 206–229.Google Scholar
  8. 8.
    Wong, C.-H. and Whitesides, G. M. (1994) Enzymes in Synthetic Organic Chemistry. Elsevier Science, Oxford.Google Scholar
  9. 9.
    Nilsson, K. G. I. (1996) Synthesis with glycosidases, in Modern Methods in Carbohydrate Synthesis (Khan, S. H. and O’Neill, R. A., eds.), Harwood Academic Publishers, Amsterdam, pp. 518–547.Google Scholar
  10. 10.
    Palcic M. M. and Hindsgaul, O. (1996) Glycosyltransferases in the synthesis of oligosaccharide analogs. Trends Glycosci. Glycotechnol. 8, 37–49.Google Scholar
  11. 11.
    Elling, L. (1997) Glycobiotechnology: Enzymes for the synthesis of nucleotide sugars. Adv. Biochem. Eng. Biotechnol. 58, 89–144.PubMedGoogle Scholar
  12. 12.
    Elling, L. and Kula, M.-R. (1993) Purification of sucrose synthase from rice and its protein-chemical characterization. J. Biotechnol. 29, 277–286.CrossRefGoogle Scholar
  13. 13.
    Elling, L., Güldenberg, B., Grothus, M., Zervosen, A., Péus, M., Helfer, A., Stein, A., et al. (1995) Isolation of sucrose synthase from rice (Oryza sativa) grains in pilot scale for application in carbohydrate synthesis. Biotechnol. Appl. Biochem. 21, 29–37.Google Scholar
  14. 14.
    Schrader, H. (1998) Phd-thesis, Heimrich Heine University, Drisseldorf, Germany.Google Scholar
  15. 15.
    Elling, L., Grothus, M., and Kula, M.-R. (1993) Investigation of sucrose synthase from rice for the synthesis of various nucleotide sugars and saccharides. Glycobiology 3, 349–355.PubMedCrossRefGoogle Scholar
  16. 16.
    Elling, L. and Kula, M.-R. (1995) Characterization of sucrose synthase from rice grains for the enzymatic synthesis of UDP-and TDP-glucose. Enzyme Microb. Technol. 17, 929–934.CrossRefGoogle Scholar
  17. 17.
    Zervosen, A., Stein, A., Adrian, H., and Elling, L. (1996) Combined enzymatic synthesis of nucleotide (deoxy)sugars from sucrose and nucleoside monophosphates. Tetrahedron 52, 2395–2404.CrossRefGoogle Scholar
  18. 18.
    Stein, A., Kula, M.-R., and Elling, L. (1998) Combined preparative enzymatic synthesis of dTDP-6-deoxy-4-keto-D-glucose from dTDP and sucrose. Glycoconjugate J. 15, 139–145.CrossRefGoogle Scholar
  19. 19.
    Preiss J. (1991) Biology and molecular biology of starch synthesis and its regulation, in Oxford Surveys of Plant Molecular & Cell Biology, vol. 7 (Miflin, B. J., ed.), Oxford University Press, Oxford, pp. 59–114.Google Scholar
  20. 20.
    Kleczkowski, L. A., Villand, P., Lönneborg, A., Olsen, O.-A., and Ernst, L. (1991) Plant ADP-glucose pyrophosphorylase: recent advances and biotechnological perspectives (a review). Z. Naturforsch. 46c, 605–612.Google Scholar
  21. 21.
    Preiss, J. and Romeo, T. (1989) Physiology, biochemistry and genetics of bacterial glycogen synthesis. Adv. Microb. Physiol. 30, 183–238.PubMedCrossRefGoogle Scholar
  22. 22.
    Zervosen, A. and Elling, L. (1996) A novel three-enzymes-reaction-cycle for the synthesis of N-acetyllactosamine with in situ regeneration of uridine 5′-diphosphate glucose and uridine 5′-diphosphate galactose. J. Am. Chem. Soc. 118, 1836–1840.CrossRefGoogle Scholar
  23. 23.
    Varki, A. (1994) Selectin ligands. Proc. Natl. Acad. Sci. USA 91, 7390–7397.PubMedCrossRefGoogle Scholar
  24. 24.
    Montreuil, J., Vliegenthart, J. F. G., and Schachter, H. (eds.) (1995) Glycoproteins. New Comprehensive Biochemistry, vol. 29a. Elsevier, Amsterdam.Google Scholar
  25. 25.
    Nelsestuen, G. and Kirkwood, S. (1971) The mechanism of action of the uridine diphosphoglucose 4-epimerase. J. Biol. Chem. 246, 7533–7543.Google Scholar
  26. 26.
    Zervosen, A., Elling, L., and Kula, M.-R. (1994) Continuous enzymatic synthesis of 2′-Deoxythymidine-5′-(α-D-glucopyranosyl)-diphosphate. Angew. Chem. Int. Ed. Engl. 33, 571–572.CrossRefGoogle Scholar
  27. 27.
    Bergmeyer, H. U. (1974) Adenosine 5′-diphosphoglucose. Methods Enzymatic Analysis 7, 496–502.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 1999

Authors and Affiliations

  • Astrid Zervosen
    • 1
  • Lothar Elling
    • 1
  1. 1.Institute of Enzyme TechnologyHeinrich-Heine-University Düsseldorf Research Center JülichJülichGermany

Personalised recommendations