Advertisement

2 Microbial Cell Disruption by High-Pressure Homogenization

  • Anton P. J. Middelberg
Part of the Methods in Biotechnology book series (MIBT, volume 9)

Abstract

The disruption of a cell’s wall is often a primary step in product isolation, particularly when hosts such as Escherichia coli and Saccharomyces cerevisiae, which generally do not excrete product, are employed. Of the available methods, high-pressure homogenization is dominant at moderate or large process volumes.

Keywords

Cell Disruption Photon Correlation Spectroscopy Disruption Efficiency Tank Level Electrical Sense Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Kleinig, A. R. and Middelberg, A. P. J. (1998) On the mechanism of microbial cell disruption in high-pressure homogenisation. Chem. Eng. Sci. 53, 891–898.CrossRefGoogle Scholar
  2. 2.
    Middelberg, A. P. J. (1995) Process-scale disruption of microorganisms. Biotech. Adv. 13, 491–551.CrossRefGoogle Scholar
  3. 3.
    Kula, M. R. and Schutte, H. (1987) Purification of proteins and the disruption of microbial cells. Biotechnol. Progr. 3, 31–42.CrossRefGoogle Scholar
  4. 4.
    Chisti, Y. and Moo-Young, M. (1986) Disruption of microbial cells for intracellular products. Enzyme Microb. Technol. 8, 194–204.CrossRefGoogle Scholar
  5. 5.
    Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analyt. Biochem. 72, 248–254.CrossRefGoogle Scholar
  6. 6.
    Augenstein, D. C., Thrasher, K., Sinskey, A. J., and Wang, D. I. C. (1974) Optimization in the recovery of a labile intracellular enzyme. Biotechnol. Bioeng. 16, 1433_1447.CrossRefGoogle Scholar
  7. 7.
    Kleinig, A. R., Mansell, C. J., Nguyen, Q. D, Badalyan, A., and Middelberg, A. P. J. (1995) Influence of broth dilution on the disruption of Escherichia coli. Biotech. Tech. 9, 759–762.Google Scholar
  8. 8.
    Hetherington, P. J., Follows, M., Dunnill, P., Lilly, M. D. (1971) Release of protein from baker’s yeast (Saccharomyces cerevisiae) by disruption in an industrial homogeniser. Trans. Instn. Chem. Engrs. 49, 142–148.Google Scholar
  9. 9.
    Engler, C. R. and Robinson, C. W. (1979) New method of measuring cell-wall rupture. Biotechnol. Bioeng. 21, 1861–1869.CrossRefGoogle Scholar
  10. 10.
    Vogels, G. and Kula, M. R. (1992) Combination of enzymatic and/or thermal pretreatment with mechanical cell disintegration. Chem. Eng. Sci. 47, 123–131.CrossRefGoogle Scholar
  11. 11.
    Lutzer, R. G., Robinson, C. W., and Glick, B. R. (1994) Two stage process for increasing cell disruption of E. coli for intracellular products recovery, in Proceedings of the 6th European Congress on Biotechnology (Alberghina, A., Frontali, L, and Sensi, P. eds.), Elsevier Science B. V., Amsterdam, pp. 111–121.Google Scholar
  12. 12.
    Baldwin, C. and Robinson, C. W. (1990) Disruption of Saccharomyces cerevisiae using enzymatic lysis combined with high-pressure homogenization. Biotechnol. Tech. 4, 329–334.Google Scholar
  13. 13.
    Baldwin, C. V. and Robinson, C. W. (1994) Enhanced disruption of Candida utilis using enzymatic pretreatment and high-pressure homogenization. Biotechnol. Bioeng. 43, 46–56.CrossRefGoogle Scholar
  14. 14.
    Collis, M. A. and O’Neill, B. K., and Middelberg, A. P. J. (1996) The effect of thermal deactivation on the properties and processing characteristics of Escherichia coli. Bioseparation 6, 55–63.Google Scholar
  15. 15.
    Watson, J. S., Cumming, R. H., Street, G., and Tuffnell, J. M. (1987) Release of intracellular protein by thermolysis, in Separations for Biotechnology (Verrall, M. S. and Hudson, M. J., eds.), Ellis Horwood, London, pp. 105–109.Google Scholar
  16. 16.
    Melendres, A. V., Unno, H., Shiragami, N., and Unno, H. (1991) A kinetic analysis of cell disruption by bead mill. Bioseparation 2, 231–236.Google Scholar
  17. 17.
    Middelberg, A. P. J., Bogle, I. D. L., and Snoswell, M. (1990) Sizing biological samples by photosedimentation techniques. Biotechnol. Prog. 6, 255–261.CrossRefGoogle Scholar
  18. 18.
    Agerkvist, I. and Enfors, S.-O. (1990) Characterization of E. coli cell disintegrates from a bead mill and high-pressure homogenisers. Biotechnol. Bioeng. 36, 1083–1089.CrossRefGoogle Scholar
  19. 19.
    Olbrich, R. (1989) The characterisation and recovery of protein inclusion bodies from recombinant Escherichia coli. Ph.D. thesis, University of London, UK. 21 20.Google Scholar
  20. 20.
    Jin, K. (1992) Studies of the scale-up of production and recovery of recombinant proteins formed as inclusion bodies. Ph.D. thesis, Univ. London, UK.Google Scholar
  21. 21.
    Siddiqi, S. F., Titchener-Hooker, N. J., and Shamlou, P. A. (1996) Simulation of particle size distribution changes occurring during high-pressure disruption of bakers’ yeast. Biotechnol. Bioeng. 50, 145–150.CrossRefGoogle Scholar
  22. 22.
    Wong, H. H., O’Neill, B. K., Middelberg, A. P. J. (1997) Cumulative sedimentation analysis of Escherichia coli debris size. Biotechnol. Bioeng. 55, 556–564.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2000

Authors and Affiliations

  • Anton P. J. Middelberg
    • 1
  1. 1.Department of Chemical EngineeringUniversity of CambridgeCambridgeUK

Personalised recommendations