Advertisement

Carotenoid Isotopolog Profiling in 13C-Labeled Leaf Extracts by LC-MS and LC-FTICR-MS

  • Björn Thiele
  • Shizue MatsubaraEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2083)

Abstract

Mass spectrometry (MS)-based metabolite analysis combined with stable isotope labeling offers a powerful tool to study dynamic regulation of metabolic pathways and metabolite fluxes in biological systems. Here we describe a method to analyze the composition of carotenoid isotopologs in 13C-labeled leaf extracts by using liquid chromatography (LC)-MS and LC-Fourier transform ion cyclotron resonance (FTICR)-MS. High mass resolution of the latter enables unambiguous assignment of observed mass to a unique chemical formula. Based on peak intensity the relative abundance and the degree of 13C labeling are calculated for individual carotenoid isotopologs.

Key words

13C labeling Carotenoid metabolism Degree of labeling FTICR-MS Isotopolog profiling LC-MS 

Notes

Acknowledgments

We thank Ingar Janzik and Andrea Neuwohner for 13C-labeled leaf material of peppermint.

References

  1. 1.
    Cazzonelli CI, Pogson BJ (2010) Source to sink: regulation of carotenoid biosynthesis in plants. Trends Plant Sci 15:266–274CrossRefGoogle Scholar
  2. 2.
    Ruiz-Sola MÁ, Rodríguez-Conceptión M (2012) Carotenoid biosynthesis in Arabidopsis: A colorful pathway. In: The Arabidopsis Book, vol. 10. American Society of Plant Biologists, p e0158Google Scholar
  3. 3.
    Britton G (1985) Stable isotopes in carotenoid biochemistry. Pure Appl Chem 57:701–708CrossRefGoogle Scholar
  4. 4.
    Lichtenthaler HK (1999) The 1-deoxy-d-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 50:47–65CrossRefGoogle Scholar
  5. 5.
    Szecowka M, Heise R, Tohge T, Nunes-Nesi A, Vosloh D, Huege J, Feil R, Lunn J, Nikoloski Z, Stitt M, Fernie AR, Arrivault S (2013) Metabolic fluxes in an illuminated Arabidopsis rosette. Plant Cell 25:694–714CrossRefGoogle Scholar
  6. 6.
    Delwiche CF, Sharkey TD (1993) Rapid appearance of 13C in biogenic isoprene when 13CO2 is fed to intact leaves. Plant Cell Environ 16:587–591CrossRefGoogle Scholar
  7. 7.
    Ghirardo A, Wright LP, Bi Z, Rosenkranz M, Pulido P, Rodríguez-Concepción M, Niinemetz Ü, Brüggeman N, Gershenzon J, Schnitzler J-P (2014) Metabolic flux analysis of plastidic isoprenoid biosynthesis in poplar leaves emitting and nonemitting isoprene. Plant Physiol 165:37–51CrossRefGoogle Scholar
  8. 8.
    Beisel KG, Jahnke S, Hofmann D, Köppchen S, Schurr U, Matsubara S (2010) Continuous turnover of carotenes and chlorophyll a in mature leaves of Arabidopsis revealed by 14CO2 pulse-chase labeling. Plant Physiol 152:2188–2199CrossRefGoogle Scholar
  9. 9.
    Aharoni A, de Vos CHR, Verhoeven HA, Maliepaard CA, Kruppa G, Bino R, Goodenowe DB (2002) Nontargeted metabolome analysis by use of Fourier transform ion cyclotron mass spectrometry. OMICS 6:217–234CrossRefGoogle Scholar
  10. 10.
    Fiehn O (2002) Metabolomics—the link between genotypes and phenotypes. Plant Mol Biol 48:151–171CrossRefGoogle Scholar
  11. 11.
    Lei Z, Huhman DV, Sumner LW (2011) Mass spectrometry strategies in metabolomics. J Biol Chem 286:25435–25442CrossRefGoogle Scholar
  12. 12.
    Heise R, Arrivault S, Szecowka M, Tohge T, Nunes-Nesi A, Stitt M, Nikoloski Z, Fernie AR (2014) Flux profiling of photosynthetic carbon metabolism in intact plants. Nat Protoc 9:1803–1824CrossRefGoogle Scholar
  13. 13.
    Allen DG (2016) Quantifying plant phenotypes with isotopic labeling & metabolic flux analysis. Curr Opin Biotechnol 37:45–52CrossRefGoogle Scholar
  14. 14.
    Gleichenhagen M, Zimmermann BF, Herzig B, Janzik I, Jahnke S, Boner M, Stehle P, Galensa R (2013) Intrinsic isotopic 13C labeling of polyphenols. Food Chem 141:2582–2590CrossRefGoogle Scholar
  15. 15.
    Dersch LM, Beckers V, Rasch D, Melzer G, Bolten C, Kiep K, Becker H, Bläsing OE, Fuchs R, Ehrhardt T, Wittmann C (2016) Novel approach for high-throughput metabolic screening of whole plants by stable isotopes. Plant Physiol 171:25–41CrossRefGoogle Scholar
  16. 16.
    van Breemen RB, Huang C-R, Tan Y, Sander LC, Schilling AB (1996) Liquid chromatography/mass spectrometry of carotenoids using atmospheric pressure chemical ionization. J Mass Spectrom 31:975–981CrossRefGoogle Scholar
  17. 17.
    Kurilich AC, Britz SJ, Clevidence BA, Novotny JA (2003) Isotopic labeling and LC-APCI-MS quantification for investigating absorption of carotenoids and phylloquinone from kale (Brassica oleracea). J Agric Food Chem 51:4877–4888CrossRefGoogle Scholar
  18. 18.
    Stöggl W, Huck C, Wongyai S, Scherz H, Bonn G (2005) Simultaneous determination of carotenoids, tocopherols, and gamma-oryzanol in crude rice bran oil by liquid chromatography coupled to diode array and mass spectrometric detection employing silica C30 stationary phases. J Sep Sci 28:1712–1718CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.IBG-2: Plant Sciences, Forschungszentrum JülichJülichGermany
  2. 2.IBG-3: Agrosphere, Forschungszentrum JülichJülichGermany

Personalised recommendations