Advertisement

Quantification of Strigolactones

  • Carlos Rial
  • Rosa M. Varela
  • José M. G. Molinillo
  • Alexandra G. Durán
  • Francisco A. MacíasEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2083)

Abstract

Strigolactones (SLs) are a family of natural products produced by the plants as shoot branching factors and responsible for the induction of hyphal branching in arbuscular mycorrhizal (AM) fungi. They have been also used by parasitic plant seeds as stimulators of their germination as a strategy to ensure the presence of a host in the environment. For all these bioactivities, SLs have kept the attention of the researchers in the last years, increasing the number of published papers, and have opened new areas of research in the multiple roles that they play in the rhizosphere and as plant hormones. However, the low amount of them produced by plants and their rapid degradability make it crucial to develop fast analytical methods with very low limits of quantification. Herein, it is described a protocol for the development of an LC-MS/MS method for the quantification of SLs, using GR24 as IS, in roots exudates and extracts.

Key words

Strigolactones Quantification method LC-MS/MS Carotenoids Parasitic weeds Arbuscular mycorrhizal fungi 

Notes

Acknowledgments

This research was supported by the Ministerio de Economía, Industria y Competitividad (MINEICO) (Project AGL2017-88-083-R).

References

  1. 1.
    López-Ráez JA, Charnikhova T, Gómez-Roldán V et al (2008) Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytol 178:863–874CrossRefGoogle Scholar
  2. 2.
    Delaux PM, Xie X, Timme RE et al (2012) Origin of strigolactones in the green lineage. New Phytol 195:857–871CrossRefGoogle Scholar
  3. 3.
    Siame B, Weerasuriya Y, Wood K et al (1993) Isolation of strigol, a germination stimulant for Striga asiatica. J Agric Food Chem 41:1486–1491CrossRefGoogle Scholar
  4. 4.
    Butler LG (1995) Chemical communication between the parasitic weed Striga and its crop host. A new dimension in allelochemistry. In: Inderjit KM, Dakshini M, Enhelling FA (eds) Allelopathy, organisms, processes and applications. American Chemical Society, Washington, DC, pp 158–166Google Scholar
  5. 5.
    Shen H, Ye W, Hong L et al (2006) Progress in parasitic plant biology: host selection and nutrient transfer. Plant Biol 8:175–185CrossRefGoogle Scholar
  6. 6.
    Press MC, Scholes JD, Riches CR (2001) Current status and future prospects for management of parasitic weeds (Striga and Orobanche). World’s Worst Weeds Proc:71–88Google Scholar
  7. 7.
    Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827CrossRefGoogle Scholar
  8. 8.
    Hayashi H, Akiyama K (2008) Strigolactones: host recognition signals for arbuscular mycorrhizal fungi. New Phytol 2008:55–61Google Scholar
  9. 9.
    Gomez-Roldan V, Fermas S, Brewer PB et al (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194CrossRefGoogle Scholar
  10. 10.
    Umehara M, Hanada A, Yoshida S et al (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200CrossRefGoogle Scholar
  11. 11.
    Screpanti C, Yoneyama K, Bouwmeester HJ (2016) Strigolactones and parasitic weed management 50 years after the discovery of the first natural strigolactone strigol: status and outlook. Pest Manag Sci 72:2013–2015CrossRefGoogle Scholar
  12. 12.
    Yoneyama K, Arakawa R, Ishimoto K et al (2015) Difference in striga-susceptibility is reflected in strigolactone secretion profile, but not in compatibility and host preference in arbuscular mycorrhizal symbiosis in two maize cultivars. New Phytol 206:983–989CrossRefGoogle Scholar
  13. 13.
    Sato D, Awad AA, Chae SH et al (2003) Analysis of strigolactones, germination stimulants for Striga and Orobanche, by high-performance liquid chromatography/tandem mass spectrometry. J Agric Food Chem 51:1162–1168CrossRefGoogle Scholar
  14. 14.
    Sato D, A a A, Takeuchi Y et al (2005) Confirmation and quantification of strigolactones, germination stimulants for root parasitic plants Striga and Orobanche, produced by cotton. Biosci Biotechnol Biochem 69:98–102CrossRefGoogle Scholar
  15. 15.
    Yoneyama K, Xie X, Sekimoto H et al (2008) Strigolactones, host recognition signals for root parasitic plants and arbuscular mycorrhizal fungi, from Fabaceae plants. New Phytol 179:484–494CrossRefGoogle Scholar
  16. 16.
    Yoneyama K, Yoneyama K, Takeuchi Y et al (2007) Phosphorus deficiency in red clover promotes exudation of orobanchol, the signal for mycorrhizal symbionts and germination stimulant for root parasites. Planta 225:1031–1038CrossRefGoogle Scholar
  17. 17.
    Jamil M, Charnikhova T, Cardoso C et al (2011) Quantification of the relationship between strigolactones and Striga hermonthica infection in rice under varying levels of nitrogen and phosphorus. Weed Res 51:373–385CrossRefGoogle Scholar
  18. 18.
    Boutet-Mercey S, Perreau F, Roux A et al (2018) Validated method for Strigolactone quantification by ultra high-performance liquid chromatography – electrospray ionisation tandem mass spectrometry using novel deuterium Labelled standards. Phytochem Anal 29:59–68CrossRefGoogle Scholar
  19. 19.
    Xie X, Yoneyama K, Kurita J et al (2009) 7-Oxoorobanchyl acetate and 7-Oxoorobanchol as germination stimulants for root parasitic plants from flax (Linum usitatissimum). Biosci Biotechnol Biochem 73:1367–1370CrossRefGoogle Scholar
  20. 20.
    Xie X, Kusumoto D, Takeuchi Y et al (2007) 2′-Epi-orobanchol and Solanacol, two unique Strigolactones, germination stimulants for root parasitic weeds, produced by tobacco. J Agric Food Chem 55:8067–8072CrossRefGoogle Scholar
  21. 21.
    Yokota T, Sakai H, Okuno K et al (1998) Alectrol and Orobanchol, germination stimulants for Orobanche minor, from its host red clover. Phytochemistry 49:1967–1973CrossRefGoogle Scholar
  22. 22.
    Cook CE, Whichard LP, Turner B et al (1966) Germination of Witchweed (Striga Lutea Lour)—isolation and properties of a potent stimulant. Science 154:1189–1190CrossRefGoogle Scholar
  23. 23.
    Cook C, Whichard L, Wall M et al (1972) Germination stimulants. II. Structure of strigol, a potent seed germination stimulant for witchweed (Striga lutea). J Am Chem Soc 94:6198–6199CrossRefGoogle Scholar
  24. 24.
    Xie X, Yoneyama K, Harada Y et al (2009) Fabacyl acetate, a germination stimulant for root parasitic plants from Pisum sativum. Phytochemistry 70:211–215CrossRefGoogle Scholar
  25. 25.
    Xie X, Yoneyama K, Kusumoto D et al (2008) Isolation and identification of alectrol as (+)-orobanchyl acetate, a germination stimulant for root parasitic plants. Phytochemistry 69:427–431CrossRefGoogle Scholar
  26. 26.
    Zwanenburg B, Pospíšil T (2013) Structure and activity of strigolactones: new plant hormones with a rich future. Mol Plant 6:38–62CrossRefGoogle Scholar
  27. 27.
    Rial C, Varela RM, Molinillo JMG et al (2019) A new UHPLC-MS/MS method for the direct determination of strigolactones in root exudates and extracts. Phytochem Anal 30:110–116CrossRefGoogle Scholar
  28. 28.
    ICH (2005) ICH Topic Q2 (R1) Validation of analytical procedures: text and methodology, GenevaGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Carlos Rial
    • 1
  • Rosa M. Varela
    • 1
  • José M. G. Molinillo
    • 1
  • Alexandra G. Durán
    • 1
  • Francisco A. Macías
    • 1
    Email author
  1. 1.Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), School of SciencesUniversity of CadizCadizSpain

Personalised recommendations