A Novel Preclinical Rat Model of Alzheimer’s Disease

  • Karim A. AlkadhiEmail author
Part of the Neuromethods book series (NM, volume 152)


We have developed a novel rat model that correlates with seemingly normal individuals who are predisposed (at-risk) to developing Alzheimer’s disease (AD). This work summarizes the findings we have reported on the effect of chronic psychosocial stress in this at-risk rat model of AD. Behavioral (learning and memory tests), electrophysiological (evoked LTP) and molecular (determining protein levels of signaling molecules) studies suggest that even mild chronic psychosocial stress can converts this seemingly normal rat into one showing clear AD phenotype. It is well known that vast individual variations exist in the time of onset and severity of the sporadic type of AD. Therefore, a patient-related external factor must be assumed to play a significant role in the development of the sporadic type of the disease. Since stress is increasingly recognized as an external factor in the development of AD, we tested the effect of mild psychosocial stress on our at-risk model.

Key words

Rat subclinical AD model Amyloid-beta Learning and memory Signaling molecules Synaptic plasticity 


  1. 1.
    Tanzi RE, Bertram L (2005) Twenty years of the Alzheimer’s disease amyloid hypothesis: a genetic perspective. Cell 120:545–555CrossRefGoogle Scholar
  2. 2.
    Castellani RJ, Lee HG, Zhu X, Perry G, Smith MA (2008) Alzheimer disease pathology as a host response. J Neuropathol Exp Neurol 67:523–531PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Srivareerat M, Tran TT, Alzoubi KH, Alkadhi KA (2009) Chronic psychosocial stress exacerbates impairment of cognition and long-term potentiation in beta-amyloid rat model of Alzheimer’s disease. Biol Psychiatry 65:918–926PubMedCrossRefGoogle Scholar
  4. 4.
    Srivareerat M, Tran TT, Salim S, Aleisa AM, Alkadhi KA (2011) Chronic nicotine restores normal Abeta levels and prevents short-term memory and E-LTP impairment in Abeta rat model of Alzheimer’s disease. Neurobiol Aging 32:834–844PubMedCrossRefGoogle Scholar
  5. 5.
    Alkadhi KA, Srivareerat M, Tran TT (2010a) Intensification of long-term memory deficit by chronic stress and prevention by nicotine in a rat model of Alzheimer’s disease. Mol Cell Neurosci 45(3):289–296PubMedCrossRefGoogle Scholar
  6. 6.
    Alkadhi KA, Srivareerat M, Tran TT (2011) Chronic psychosocial stress exacerbates impairment of synaptic plasticity in β-amyloid rat model of Alzheimer’s disease: prevention by nicotine. Current Alz Res 8:718–731CrossRefGoogle Scholar
  7. 7.
    Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I, Brett FM, Farrell MA, Rowan MJ, Lemere CA, Regan CM, Walsh DM, Sabatini BL, Selkoe DJ (2008) Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med 14:837–842PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Mesulam MM (1999) Neuroplasticity failure in Alzheimer’s disease: bridging the gap between plaques and tangles. Neuron 24:521–529PubMedCrossRefGoogle Scholar
  9. 9.
    Rowan MJ, Klyubin I, Cullen WK, Anwyl R (2003) Synaptic plasticity in animal models of early Alzheimer’s disease. Philos Trans R Soc Lond Ser B Biol Sci 358:821–828CrossRefGoogle Scholar
  10. 10.
    Selkoe DJ (2004) Alzheimer disease: mechanistic understanding predicts novel therapies. Ann Intern Med 140:627–638PubMedCrossRefGoogle Scholar
  11. 11.
    Sakono M, Zako T (2010) Amyloid oligomers: formation and toxicity of Abeta oligomers. FEBS J 277(6):1348–1358PubMedCrossRefGoogle Scholar
  12. 12.
    Walker E, Mittal V, Tessner K (2008) Stress and the hypothalamic pituitary adrenal axis in the developmental course of schizophrenia. Annu Rev Clin Psychol 4:189–216PubMedCrossRefGoogle Scholar
  13. 13.
    Whitworth JA, Mangos GJ, Kelly JJ (2000) Cushing, cortisol, and cardiovascular disease. Hypertension 36:912–916PubMedCrossRefGoogle Scholar
  14. 14.
    Gerges NZ, Aleisa AM, Schwarz LA, Alkadhi KA (2004) Reduced basal CaMKII levels in hippocampal CA1 region: possible cause of stress-induced impairment of LTP in chronically stressed rats. Hippocampus 14:402–410PubMedCrossRefGoogle Scholar
  15. 15.
    Gerges NZ, Alzoubi KH, Park CR, Diamond DM, Alkadhi KA (2004) Adverse effect of the combination of hypothyroidism and chronic psychosocial stress on hippocampus-dependent memory in rats. Behav Brain Res 155:77–84PubMedCrossRefGoogle Scholar
  16. 16.
    Alzoubi KH, Aleisa AM, Alkadhi KA (2008) Effect of chronic stress or nicotine on hypothyroidism–induced enhancement of LTD: electrophysiological and molecular studies. Neurobiol Dis 32(1):81–87PubMedCrossRefGoogle Scholar
  17. 17.
    Elgh E, Lindqvist Astot A, Fagerlund M, Eriksson S, Olsson T, Näsman B (2006) Cognitive dysfunction, hippocampal atrophy and glucocorticoid feedback in Alzheimer’s disease. Biol Psychiatry 59(2):155–161PubMedCrossRefGoogle Scholar
  18. 18.
    Hartmann A, Veldhuis JD, Deuschle M, Standhardt H, Heuser I (1997) Twenty-four hour cortisol release profiles in patients with Alzheimer’s and Parkinson’s disease compared to normal controls: ultradian secretory pulsatility and diurnal variation. Neurobiol Aging 18:285–289PubMedCrossRefGoogle Scholar
  19. 19.
    Budas G, Coughlan CM, Seckl JR, Breen KC (1999) The effect of corticosteroids on amyloid beta precursor protein/amyloid precursor-like protein expression and processing in vivo. Neurosci Lett 276(1):61–64PubMedCrossRefGoogle Scholar
  20. 20.
    Islam A, Kalaria RN, Winblad B, Adem A (1998) Enhanced localization of amyloid beta precursor protein in the rat hippocampus following long-term adrenalectomy. Brain Res 806:108–112PubMedCrossRefGoogle Scholar
  21. 21.
    Wilson MA, McNaughton BL (1993) Dynamics of the hippocampal ensemble code for space. Science 261:1055–1058PubMedCrossRefGoogle Scholar
  22. 22.
    Wilson RS, Evans DA, Bienias JL, Mendes de Leon CF, Schneider JA, Bennett DA (2003) Proneness to psychological distress is associated with risk of Alzheimer’s disease. Neurology 61:1479–1485CrossRefGoogle Scholar
  23. 23.
    Wilson RS, Schneider JA, Boyle PA, Arnold SE, Tang Y, Bennett DA (2007) Chronic distress and incidence of mild cognitive impairment. Neurology 68:2085–2092PubMedCrossRefGoogle Scholar
  24. 24.
    Aleisa AM, Alzoubi KH, Alkadhi KA (2006b) Chronic but not acute nicotine treatment reverses stress-induced impairment of LTP in anesthetized rats. Brain Res 1097:78–84PubMedCrossRefGoogle Scholar
  25. 25.
    McEwen BS (2008) Central effects of stress hormones in health and disease: understanding the protective and damaging effects of stress and stress mediators. Eur J Pharmacol 583:174–185PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Alkadhi KA (2018) Exercise decreases BACE and APP levels in the hippocampus of a rat model of Alzheimer’s disease. Mol Cell Neurosci 86:25–29PubMedCrossRefGoogle Scholar
  27. 27.
    Buresova O, Bures J, Oitzl MS, Zahalka A (1985) Radial maze in the water tank: an aversively motivated spatial working memory task. Physiol Behav 34:1003–1005PubMedCrossRefGoogle Scholar
  28. 28.
    Hodges H (1996) Maze procedures: the radial-arm and water maze compared. Brain Res Cogn Brain Res 3:167–181PubMedCrossRefGoogle Scholar
  29. 29.
    Diamond DM, Park CR, Heman KL, Rose GM (1999) Exposing rats to a predator impairs spatial working memory in the radial arm water maze. Hippocampus 9:542–552PubMedCrossRefGoogle Scholar
  30. 30.
    Alamed J, Wilcock DM, Diamond DM, Gordon MN, Morgan D (2006) Two-day radial-arm water maze learning and memory task; robust resolution of amyloid-related memory deficits in transgenic mice. Nat Protoc 1:1671–1679PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Tran TT, Srivareerat M, Alkadhi KA (2010) Chronic psychosocial stress triggers cognitive impairment in a novel at-risk model of Alzheimer’s disease. Neurobiol Dis 37:756–763PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Tran TT, Srivareerat M, Alkadhi KA (2011) Chronic psychosocial stress accelerates impairment of long-term memory and late-phase long-term potentiation in an at-risk model of Alzheimer’s disease. Hippocampus 21:724–732PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Pepeu G, Giovannelli L, Casamenti F, Scali C, Bartolini L (1996) Amyloid beta-peptides injection into the cholinergic nuclei: morphological, neurochemical and behavioral effects. Prog Brain Res 109:273–282PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Nabeshima T, Itoh A (1998) Toxicity of beta-amyloid peptide. J Toxicol Sci 23(Suppl 2):177–180PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Giovannini MG, Scali C, Prosperi C, Bellucci A, Vannucchi MG, Rosi S, Pepeu G, Casamenti F (2002) Beta-amyloid-induced inflammation and cholinergic hypofunction in the rat brain in vivo: involvement of the p38MAPK pathway. Neurobiol Dis 11(2):257–274PubMedCrossRefGoogle Scholar
  36. 36.
    Goodman Y, Mattson MP (1994) Secreted forms of beta-amyloid precursor protein protect hippocampal neurons against amyloid beta-peptide-induced oxidative injury. Exp Neurol 128:1–12PubMedCrossRefGoogle Scholar
  37. 37.
    Green PS, Gridley KE, Simpkins JW (1996) Estradiol protects against beta-amyloid (25-35)-induced toxicity in SK-N-SH human neuroblastoma cells. Neurosci Lett 218:165–168PubMedCrossRefGoogle Scholar
  38. 38.
    Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, Morgan TE, Rozovsky I, Trommer B, Viola KL, Wals P, Zhang C, Finch CE, Krafft GA, Klein WL (1998) Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci U S A 95:6448–6453PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Assis-Nascimento P, Jarvis KM, Montague JR, Mudd LM (2007) Beta-amyloid toxicity in embryonic rat astrocytes. Neurochem Res 32:1476–1482PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Lue LF, Kuo YM, Roher AE, Brachova L, Shen Y, Sue L, Beach T, Kurth JH, Rydel RE, Rogers J (1999) Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer’s disease. Am J Pathol 155:853–862PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Ingelsson M, Fukumoto H, Newell KL, Growdon JH, Hedley-Whyte ET, Frosch MP, Albert MS, Hyman BT, Irizarry MC (2004) Early Abeta accumulation and progressive synaptic loss, gliosis, and tangle formation in AD brain. Neurology 62:925–931PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Carrotta R, Di Carlo M, Manno M, Montana G, Picone P, Romancino D, San Biagio PL (2006) Toxicity of recombinant beta-amyloid prefibrillar oligomers on the morphogenesis of the sea urchin Paracentrotus lividus. FASEB J 20:1916–1917PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Dao AT, Zagaar MA, Levine AT, Salim S, Eriksen JL, Alkadhi KA (2013) Treadmill exercise prevents learning and memory impairment in Alzheimer’s disease-like pathology. Curr Alzheimer Res 10(5):507–515PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates, 2nd edn. Academic Press Inc., New YorkGoogle Scholar
  45. 45.
    Aleisa AM, Alzoubi KH, Gerges NZ, Alkadhi KA (2006d) Chronic psychosocial stress-induced impairment of hippocampal LTP: possible role of BDNF. Neurobiol Dis 22:453–462PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Gerges NZ, Stringer JL, Alkadhi KA (2001) Combination of hypothyroidism and stress abolishes early LTP in the CA1 but not dentate gyrus of hippocampus of adult rats. Brain Res 922(2):250–260PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Alkadhi KA, Alzoubi KH, Aleisa AM, Tanner FL, Nimer AS (2005) Psychosocial stress-induced hypertension results from in vivo expression of long-term potentiation in rat sympathetic ganglia. Neurobiol Dis 20(3):849–857PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Zagaar M, Alhaider I, Dao A, Levine A, Alkarawi A, Alzubaidy M, Alkadhi K (2012) The beneficial effects of regular exercise on cognition in REM sleep deprivation: behavioral, electrophysiological and molecular evidence. Neurobiol Dis 45(3):1153–1162PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Aleisa AM, Alzoubi KH, Alkadhi KA (2006a) Nicotine prevents stress-induced enhancement of long-term depression in hippocampal area CA1: electrophysiological and molecular studies. J Neurosci Res 83:309–317PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Alzoubi KH, Aleisa AM, Alkadhi KA (2006) Molecular studies on the protective effect of nicotine in adult-onset hypothyroidism-induced impairment of long-term potentiation. Hippocampus 16(10):861–874PubMedCrossRefGoogle Scholar
  51. 51.
    Gerges NZ, Alkadhi KA (2004) Hypothyroidism impairs late LTP in CA1 region but not in dentate gyrus of the intact rat hippocampus: MAPK involvement. Hippocampus 14(1):40–45PubMedCrossRefGoogle Scholar
  52. 52.
    Aleisa AM, Alzoubi KH, Gerges NZ, Alkadhi KA (2006c) Nicotine blocks stress-induced impairment of spatial memory and long-term potentiation of the hippocampal CA1 region. Int J Neuropsychopharmacol 9(4):417–426PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Alzoubi KH, Aleisa AM, Alkadhi KA (2007) Nicotine prevents disruption of the late phase LTP-related molecular cascade in adult-onset hypothyroidism. Hippocampus 17(8):654–664PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Laurberg S (1979) Commissural and intrinsic connections of the rat hippocampus. J Comp Neurol 184:685–708PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Tamamaki N, Abe K, Nojyo Y (1988) Three-dimensional analysis of the whole axonal arbors originating from single CA2 pyramidal neurons in the rat hippocampus with the aid of a computer graphic technique. Brain Res 452:255–272PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Ishizuka N, Weber J, Amaral DG (1990) Organization of intrahippocampal projections originating from CA3 pyramidal cells in the rat. J Comp Neurol 295:580–623PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Papatheodoropoulos C, Kostopoulos G (2000) Decreased ability of rat temporal hippocampal CA1 region to produce long-term potentiation. Neurosci Lett 279:177–180PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Alhaider IA, Aleisa AM, Tran TT, Alzoubi KH, Alkadhi KA (2010) Chronic caffeine treatment prevents sleep deprivation-induced impairment of cognitive function and synaptic plasticity. Sleep 33(4):437–444PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Alkadhi KA, Tran TT (2015) Chronic stress decreases basal levels of memory-related signaling molecules in area CA1 of at-risk (subclinical) model of Alzheimer’s disease. Mol Neurobiol 52(1):93–100PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Lisman J, Schulman H, Cline H (2002) The molecular basis of CaMKII function in synaptic and behavioural memory. Nat Rev Neurosci 3:175–190PubMedCrossRefGoogle Scholar
  61. 61.
    Malenka RC, Kauer JA, Perkel DJ, Mauk MD, Kelly PT, Nicoll RA, Waxham MN (1989) An essential role for postsynaptic calmodulin and protein kinase activity in long-term potentiation. Nature 340(6234):554–557PubMedCrossRefGoogle Scholar
  62. 62.
    Nicoll RA, Malenka RC, Kauer JA (1989) The role of calcium in long-term potentiation. Ann N Y Acad Sci 568:166–170PubMedCrossRefGoogle Scholar
  63. 63.
    Fukunaga K, Stoppini L, Miyamoto E, Muller D (1993) Long-term potentiation is associated with an increased activity of Ca2+/calmodulin-dependent protein kinase II. J Biol Chem 268:7863–7867PubMedGoogle Scholar
  64. 64.
    Feng TP (1995) The involvement of PKC and multifunctional CaM kinase II of the postsynaptic neuron in induction and maintenance of long-term potentiation. Prog Brain Res 105:55–63PubMedCrossRefGoogle Scholar
  65. 65.
    Kim JJ, Yoon KS (1998) Stress: metaplastic effects in the hippocampus. Trends Neurosci 21:505–509PubMedCrossRefGoogle Scholar
  66. 66.
    Gerendasy DD, Sutcliffe JG (1997) RC3/neurogranin, a postsynaptic calpacitin for setting the response threshold to calcium influxes. Mol Neurobiol 15:131–163PubMedCrossRefGoogle Scholar
  67. 67.
    Wang JH, Kelly PT (1995) Postsynaptic injection of CA2+/CaM induces synaptic potentiation requiring CaMKII and PKC activity. Neuron 15:443–452PubMedCrossRefGoogle Scholar
  68. 68.
    Holmes WR (2000) Models of calmodulin trapping and CaM kinase II activation in a dendritic spine. J Comput Neurosci 8(1):65–85PubMedCrossRefGoogle Scholar
  69. 69.
    Fukunaga K, Muller D, Miyamoto E (1996) CaMkinase II in long-term potentiation. Neurochem Int 28:343–358PubMedCrossRefGoogle Scholar
  70. 70.
    Nayak AS, Moore CI, Browning MD (1996) Ca2+/calmodulin-dependent protein kinase II phosphorylation of the presynaptic protein synapsin I is persistently increased during long-term potentiation. Proc Natl Acad Sci U S A 93:15451–15456PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Barria A, Derkach V, Soderling T (1997) Identification of the Ca2+/calmodulin-dependent protein kinase II regulatory phosphorylation site in the alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate-type glutamate receptor. J Biol Chem 272:32727–32730PubMedCrossRefGoogle Scholar
  72. 72.
    Wang JH, Kelly PT (1996) Regulation of synaptic facilitation by postsynaptic Ca2+/CaM pathways in hippocampal CA1 neurons. J Neurophysiol 76(1):276–286PubMedCrossRefGoogle Scholar
  73. 73.
    Fukunaga K, Miyamoto E (2000) A working model of CaM kinase II activity in hippocampal long-term potentiation and memory. Neurosci Res 38:3–17PubMedCrossRefGoogle Scholar
  74. 74.
    Bourtchuladze R, Frenguelli B, Blendy J, Cioffi D, Schutz G, Silva AJ (1994) Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 79:59–68CrossRefGoogle Scholar
  75. 75.
    Lonze BE, Ginty DD (2002) Function and regulation of CREB family transcription factors in the nervous system. Neuron 35:605–623PubMedCrossRefGoogle Scholar
  76. 76.
    Ecke LE, Cleck JN, White P, Schug J, Mifflin L, Blendy JA (2011) CREB-mediated alterations in the amygdala transcriptome: coordinated regulation of immune response genes following cocaine. Int J Neuropsychopharmacol 14(8):1111–1126PubMedCrossRefGoogle Scholar
  77. 77.
    Datson NA, Speksnijder N, Mayer JL, Steenbergen PJ, Korobko O, Goeman J, de Kloet ER, Joëls M, Lucassen PJ (2012) The transcriptional response to chronic stress and glucocorticoid receptor blockade in the hippocampal dentate gyrus. Hippocampus 22(2):359–371PubMedCrossRefGoogle Scholar
  78. 78.
    Li G, Wang Y, Yan M, Ma H, Gao Y, Li Z, Li C, Tian H, Zhuo C (2016) Time-dependent co-relation of BDNF and CREB mRNAs in adult rat brains following acute psychological stress in the communication box paradigm. Neurosci Lett 624:34–41PubMedCrossRefGoogle Scholar
  79. 79.
    Alberini CM (2009) Transcription factors in long-term memory and synaptic plasticity. Physiol Rev 89(1):121–145PubMedCrossRefGoogle Scholar
  80. 80.
    Arvanitis DN, Ducatenzeiler A, Ou JN, Grodstein E, Andrews SD, Tendulkar SR, Ribeiro-da-Silva A, Szyf M, Cuello AC (2007) High intracellular concentrations of amyloid-beta block nuclear translocation of phosphorylated CREB. J Neurochem 103:216–228PubMedGoogle Scholar
  81. 81.
    Snyder EM, Nong Y, Almeida CG, Paul S, Moran T, Choi EY, Nairn AC, Salter MW, Lombroso PJ, Gouras GK, Greengard P (2005) Regulation of NMDA receptor trafficking by amyloid-beta. Nat Neurosci 8:1051–1058PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Mulkey RM, Endo S, Shenolikar S, Malenka RC (1994) Involvement of a calcineurin/inhibitor-1 phosphatase cascade in hippocampal long-term depression. Nature 369:486–488PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Strack S, Barban MA, Wadzinski BE, Colbran RJ (1997) Differential inactivation of postsynaptic density-associated and soluble Ca2+/calmodulin-dependent protein kinase II by protein phosphatases 1 and 2A. J Neurochem 68(5):2119–2128PubMedCrossRefGoogle Scholar
  84. 84.
    Thiels E, Kanterewicz BI, Knapp LT, Barrionuevo G, Klann E (2000) Protein phosphatase-mediated regulation of protein kinase C during long-term depression in the adult hippocampus in vivo. J Neurosci 20(19):7199–7207PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Wang JH, Kelly PT (1997) Postsynaptic calcineurin activity downregulates synaptic transmission by weakening intracellular Ca2+ signaling mechanisms in hippocampal CA1 neurons. J Neurosci 17(12):4600–4611PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Winder DG, Mansuy IM, Osman M, Moallem TM, Kandel ER (1998) Genetic and pharmacological evidence for a novel, intermediate phase of long-term potentiation suppressed by calcineurin. Cell 92(1):25–37PubMedCrossRefGoogle Scholar
  87. 87.
    Mansuy IM, Winder DG, Moallem TM, Osman M, Mayford M, Hawkins RD, Kandel ER (1998) Inducible and reversible gene expression with the rtTA system for the study of memory. Neuron 21:257–265PubMedCrossRefGoogle Scholar
  88. 88.
    Zoladz PR, Park CR, Halonen JD, Salim S, Alzoubi KH, Srivareerat M, Fleshner M, Alkadhi KA, Diamond DM (2012) Differential expression of molecular markers of synaptic plasticity in the hippocampus, prefrontal cortex, and amygdala in response to spatial learning, predator exposure, and stress-induced amnesia. Hippocampus 22(3):577–589PubMedCrossRefGoogle Scholar
  89. 89.
    Takase K, Yamamoto Y, Yagami T (2012) Maternal deprivation in the middle of a stress hyporesponsive period decreases hippocampal calcineurin expression and causes abnormal social and cognitive behaviours in adult male Wistar rats: relevance to negative symptoms of schizophrenia. Behav Brain Res 232(1):306–315PubMedCrossRefGoogle Scholar
  90. 90.
    Gerges NZ, Aleisa AM, Schwarz LA, Alkadhi KA (2003) Chronic psychosocial stress decreases calcineurin in the dentate gyrus: a possible mechanism for preservation of early LTP. Neuroscience 117:869–874PubMedCrossRefGoogle Scholar
  91. 91.
    Gong CX, Singh TJ, Grundke-Iqbal I, Iqbal K (1994) Alzheimer’s disease abnormally phosphorylated tau is dephosphorylated by protein phosphatase-2B (calcineurin). J Neurochem 62(2):803–806PubMedCrossRefGoogle Scholar
  92. 92.
    Billingsley ML, Ellis C, Kincaid RL, Martin J, Schmidt ML, Lee VM et al (1994) Calcineurin immunoreactivity in Alzheimer’s disease. Exp Neurol 126:178–184PubMedCrossRefGoogle Scholar
  93. 93.
    Berridge MJ (2010) Calcium hypothesis of Alzheimer’s disease. Pflugers Arch 459:441–449PubMedCrossRefGoogle Scholar
  94. 94.
    Taglialatela G, Hogan D, Zhang WR, Dineley KT (2009) Intermediate- and long-term recognition memory deficits in Tg2576 mice are reversed with acute calcineurin inhibition. Behav Brain Res 200(1):95–99PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Hata R, Masumura M, Akatsu H, Li F, Fujita H, Nagai Y et al (2001) Up-regulation of calcineurin Abeta mRNA in the Alzheimer’s disease brain: assessment by cDNA microarray. Biochem Biophys Res Commun 284:310–316PubMedCrossRefGoogle Scholar
  96. 96.
    Hong CJ, Liou YJ, Tsai SJ (2011) Effects of BDNF polymorphisms on brain function and behavior in health and disease. Brain Res Bull 86(5–6):287–297PubMedCrossRefGoogle Scholar
  97. 97.
    Knusel B, Beck KD, Winslow JW, Rosenthal A, Burton LE, Widmer HR, Nikolics K, Hefti F (1992) Brain-derived neurotrophic factor administration protects basal forebrain cholinergic but not nigral dopaminergic neurons from degenerative changes after axotomy in the adult rat brain. J Neurosci 12:4391–4402PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Lindholm D, Carroll P, Tzimagiogis G, Thoenen H (1996) Autocrine-paracrine regulation of hippocampal neuron survival by IGF-1 and the neurotrophins BDNF, NT-3 and NT-4. Eur J Neurosci 8(7):1452–1460PubMedCrossRefGoogle Scholar
  99. 99.
    Lowenstein DH, Arsenault L (1996) The effects of growth factors on the survival and differentiation of cultured dentate gyrus neurons. J Neurosci 16(5):1759–1769PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Ghosh A, Carnahan J, Greenberg ME (1994) Requirement for BDNF in activity-dependent survival of cortical neurons. Science 263:1618–1623PubMedCrossRefGoogle Scholar
  101. 101.
    Bramham CR, Messaoudi E (2005) BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis. Prog Neurobiol 76:99–125PubMedCrossRefGoogle Scholar
  102. 102.
    Soule J, Messaoudi E, Bramham CR (2006) Brain-derived neurotrophic factor and control of synaptic consolidation in the adult brain. Biochem Soc Trans 34:600–604PubMedCrossRefGoogle Scholar
  103. 103.
    Dao AT, Zagaar MA, Levine AT, Alkadhi KA (2016) Comparison of the effect of exercise on late-phase LTP of the dentate gyrus and CA1 of Alzheimer’s disease model. Mol Neurobiol 53(10):6859–6868PubMedCrossRefGoogle Scholar
  104. 104.
    Dao AT, Zagaar MA, Alkadhi KA (2015) Moderate treadmill exercise protects synaptic plasticity of the dentate gyrus and related signaling Cascade in a rat model of Alzheimer’s disease. Mol Neurobiol 52(3):1067–1076PubMedCrossRefGoogle Scholar
  105. 105.
    Thoenen H (2000) Neurotrophins and activity-dependent plasticity. Prog Brain Res 128:183–191PubMedCrossRefGoogle Scholar
  106. 106.
    Huang EJ, Reichardt LF (2001) Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 24:677–736PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Yamada K, Mizuno M, Nabeshima T (2002) Role for brain-derived neurotrophic factor in learning and memory. Life Sci 70:735–744PubMedCrossRefGoogle Scholar
  108. 108.
    Connor B, Young D, Yan Q, Faull RL, Synek B, Dragunow M (1997) Brain-derived neurotrophic factor is reduced in Alzheimer’s disease. Brain Res Mol Brain Res 49:71–81PubMedCrossRefGoogle Scholar
  109. 109.
    Smith MA, Makino S, Kvetnansky R, Post RM (1995) Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J Neurosci 15(3 Pt 1):1768–1777PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Ueyama T, Kawai Y, Nemoto K, Sekimoto M, Toné S, Senba E (1997) Immobilization stress reduced the expression of neurotrophins and their receptors in the rat brain. Neurosci Res 28(2):103–110PubMedCrossRefGoogle Scholar
  111. 111.
    Lee KW, Kim JB, Seo JS, Kim TK, Im JY, Baek IS, Kim KS, Lee JK, Han PL (2009) Behavioral stress accelerates plaque pathogenesis in the brain of Tg2576 mice via generation of metabolic oxidative stress. J Neurochem 108:165–175CrossRefGoogle Scholar
  112. 112.
    Murakami S, Imbe H, Morikawa Y, Kubo C, Senba E (2005) Chronic stress, as well as acute stress, reduces BDNF mRNA expression in the rat hippocampus but less robustly. Neurosci Res 53(2):129–139PubMedCrossRefGoogle Scholar
  113. 113.
    Tsankova NM, Berton O, Renthal W, Kumar A, Neve RL, Nestler EJ (2006) Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci 9(4):519–525PubMedCrossRefGoogle Scholar
  114. 114.
    Nair A, Vadodaria KC, Banerjee SB, Benekareddy M, Dias BG, Duman RS, Vaidya VA (2007) Stressor-specific regulation of distinct brain-derived neurotrophic factor transcripts and cyclic AMP response element-binding protein expression in the postnatal and adult rat hippocampus. Neuropsychopharmacology 32(7):1504–1519PubMedCrossRefGoogle Scholar
  115. 115.
    Rothman SM, Griffioen KJ, Wan R, Mattson MP (2012) Brain-derived neurotrophic factor as a regulator of systemic and brain energy metabolism and cardiovascular health. Ann N Y Acad Sci 1264:49–63PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Alkadhi KA (2012) Chronic psychosocial stress exposes Alzheimer’s disease phenotype in a novel at-risk model. Front Biosci (Elite Ed) 4:214–229CrossRefGoogle Scholar
  117. 117.
    Tong L, Thornton PL, Balazs R, Cotman CW (2001) Beta -amyloid-(1-42) impairs activity-dependent cAMP-response element-binding protein signaling in neurons at concentrations in which cell survival is not compromised. J Biol Chem 276:17301–17306PubMedCrossRefGoogle Scholar
  118. 118.
    Tong L, Balazs R, Thornton PL, Cotman CW (2004) Beta-amyloid peptide at sublethal concentrations downregulates brain-derived neurotrophic factor functions in cultured cortical neurons. J Neurosci 24(30):6799–6809PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Liu F, Grundke-Iqbal I, Iqbal K, Oda Y, Tomizawa K, Gong CX (2005) Truncation and activation of calcineurin A by calpain I in Alzheimer disease brain. J Biol Chem 280:37755–37762PubMedCrossRefGoogle Scholar
  120. 120.
    Thinakaran G, Koo EH (2008) Amyloid precursor protein trafficking, processing, and function. J Biol Chem 283(44):29615–29619PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    LaFerla FM, Green KN, Oddo S (2007) Intracellular amyloid-beta in Alzheimer’s disease. Nat Rev Neurosci 8(7):499–509PubMedCrossRefGoogle Scholar
  122. 122.
    Querfurth HW, LaFerla FM (2010) Alzheimer’s disease. N Engl J MedN Engl J Med 362(4):329–344CrossRefGoogle Scholar
  123. 123.
    Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P, Teplow DB, Ross S, Amarante P, Loeloff R, Luo Y, Fisher S, Fuller J, Edenson S, Lile J, Jarosinski MA, Biere AL, Curran E, Burgess T, Louis JC, Collins F, Treanor J, Rogers G, Citron M (1999) Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286(5440):735–741CrossRefGoogle Scholar
  124. 124.
    Townsend M, Mehta T, Selkoe DJ (2007) Soluble Abeta inhibits specific signal transduction cascades common to the insulin receptor pathway. J Biol Chem 282:33305–33312PubMedCrossRefGoogle Scholar
  125. 125.
    Zhao D, Watson JB, Xie CW (2004) Amyloid beta prevents activation of calcium/calmodulin-dependent protein kinase II and AMPA receptor phosphorylation during hippocampal long-term potentiation. J Neurophysiol 92:2853–2858PubMedCrossRefGoogle Scholar
  126. 126.
    Durany N, Michel T, Kurt J, Cruz-Sanchez FF, Cervas-Navarro J, Riederer P (2000) Brain-derived neurotrophic factor and neurotrophin-3 levels in Alzheimer’s disease brains. Int J Dev Neurosci 18:807–813PubMedCrossRefGoogle Scholar
  127. 127.
    Lindvall O, Ernfors P, Bengzon J, Kokaia Z, Smith ML, Siesjo BK, Persson H (1992) Differential regulation of mRNAs for nerve growth factor, brain-derived neurotrophic factor, and neurotrophin 3 in the adult rat brain following cerebral ischemia and hypoglycemic coma. Proc Natl Acad Sci U S A 89:648–652PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Barde YA (1989) Trophic factors and neuronal survival. Neuron 2:1525–1534PubMedCrossRefGoogle Scholar
  129. 129.
    Zuccato C, Cattaneo E (2009) Brain-derived neurotrophic factor in neurodegenerative diseases. Nat Rev Neurol 5(6):311–322PubMedCrossRefGoogle Scholar
  130. 130.
    Hellstrom-Lindahl E, Court J, Keverne J, Svedberg M, Lee M, Marutle A, Thomas A, Perry E, Bednar I, Nordberg A (2004) Nicotine reduces A beta in the brain and cerebral vessels of APPsw mice. Eur J Neurosci 19:2703–2710PubMedCrossRefGoogle Scholar
  131. 131.
    Tang Y, Yamada K, Kanou Y, Miyazaki T, Xiong X, Kambe F, Murata Y, Seo H, Nabeshima T (2000) Spatiotemporal expression of BDNF in the hippocampus induced by the continuous intracerebroventricular infusion of beta-amyloid in rats. Brain Res Mol Brain Res 80:188–197PubMedCrossRefGoogle Scholar
  132. 132.
    Catania C, Sotiropoulos I, Silva R, Onofri C, Breen KC, Sousa N, Almeida OF (2009) The amyloidogenic potential and behavioral correlates of stress. Mol Psychiatry 14:95–105PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Pharmacological and Pharmaceutical Sciences, College of PharmacyUniversity of HoustonHoustonUSA

Personalised recommendations