Analysis of the Functional States of an Astrocyte Syncytium

  • Yixing Du
  • Conrad M. Kiyoshi
  • David Terman
  • Min ZhouEmail author
Part of the Neuromethods book series (NM, volume 152)


In the central nervous system (CNS), astrocytes are cytoplasmically interconnected through specialized conduit proteins, called gap junctions. This establishes a syncytial network that runs across the entire brain. Because of this unique anatomic characteristic, the still mysterious function of astrocytes, particularly in the adult brain, is likely hidden within this syncytial network. Recent studies show that a strong electrical coupling is a system-wide feature of astrocyte networks, which enables astrocytes to constantly equalize their membrane potentials so that a syncytial isopotentiality can be achieved. Functionally, syncytial isopotentiality coordinates the individual astrocytes into a functional system in brain homeostasis. Dysregulated extracellular K+ concentration impairs neuronal excitability and synaptic transmission. Under syncytial isopotentiality, the homeostatic regulation of extracellular K+ can be performed with far greater efficacy than previously thought. In this chapter, this newly appreciated mechanism that governs the operation of astrocyte network will be introduced. A new functional readout concerning the functional state of an astrocyte network and its application will be described. Second, a new model system, freshly dissociated astrocyte miniature syncytium, will be introduced for the quantitative analysis of astrocyte syncytial network function. Third, a computational model will be introduced. A combination of these can be powerfully applied to decipher the dynamic change in the coupling strength of an astrocyte syncytium as well as astrocyte-neuron crosstalk at system levels. This new method also has a great potential to be used to identify a causal relationship between an impaired astrocyte network function and the disease under investigation. Overall, a novel approach described in this chapter allows examination of astrocyte function at the network level in the healthy and diseased brain.

Key words

Astrocytes Gap junctions K+ channels Astrocyte syncytium Membrane potential Syncytial isopotentiality Goldman–Hodgkin–Katz equation Patch clamp Computational modeling 



This work is sponsored by a grant from the National Institute of Neurological Disorders and Stroke RO1NS062784 and R56NS097972 (MZ) and National Science Foundation DMS1410935 (DT).


  1. 1.
    Barres BA (2008) The mystery and magic of glia: a perspective on their roles in health and disease. Neuron 60(3):430–440.. Epub 2008/11/11. Scholar
  2. 2.
    Verkhratsky A, Nedergaard M (2018) Physiology of astroglia. Physiol Rev 98(1):239–389.. Epub 2018/01/20. Scholar
  3. 3.
    Kimelberg HK (2010) Functions of mature mammalian astrocytes: a current view. Neuroscientist 16(1):79–106.. Epub 2010/03/20. Scholar
  4. 4.
    Khakh BS, McCarthy KD (2015) Astrocyte calcium signaling: from observations to functions and the challenges therein. Cold Spring Harb Perspect Biol 7(4):a020404. Epub 2015/01/22. Scholar
  5. 5.
    Khakh BS, Sofroniew MV (2015) Diversity of astrocyte functions and phenotypes in neural circuits. Nat Neurosci 18(7):942–952.. Epub 2015/06/26. Scholar
  6. 6.
    Kiyoshi CM, Zhou M (2019) Astrocyte syncytium: a functional reticular system in the brain. Neural Regen Res 14(4):595–596. Epub 2019/01/12. Scholar
  7. 7.
    D'Ambrosio R, Wenzel J, Schwartzkroin PA, McKhann GM 2nd, Janigro D (1998) Functional specialization and topographic segregation of hippocampal astrocytes. J Neurosci 18(12):4425–4438. Epub 1998/06/10CrossRefGoogle Scholar
  8. 8.
    Rouach N, Koulakoff A, Abudara V, Willecke K, Giaume C (2008) Astroglial metabolic networks sustain hippocampal synaptic transmission. Science 322(5907):1551–1555.. Epub 2008/12/06. Scholar
  9. 9.
    Wallraff A, Kohling R, Heinemann U, Theis M, Willecke K, Steinhauser C (2006) The impact of astrocytic gap junctional coupling on potassium buffering in the hippocampus. J Neurosci 26(20):5438–5447.. Epub 2006/05/19. Scholar
  10. 10.
    Xu G, Wang W, Kimelberg HK, Zhou M (2010) Electrical coupling of astrocytes in rat hippocampal slices under physiological and simulated ischemic conditions. Glia 58(4):481–493. Epub 2009/10/02. Scholar
  11. 11.
    Kimelberg HK, Nedergaard M (2010) Functions of astrocytes and their potential as therapeutic targets. Neurotherapeutics 7(4):338–353. Epub 2010/10/01. Scholar
  12. 12.
    Ransom BR (1996) Do glial gap junctions play a role in extracellular ion homeostasis? In: Spray DC, Austin DR (eds) Gap junctions in the nervous system Editors. RG Landes Company, TX, pp 159–173CrossRefGoogle Scholar
  13. 13.
    Nimmerjahn A, Bergles DE (2015) Large-scale recording of astrocyte activity. Curr Opin Neurobiol 32:95–106. Epub 2015/02/11. Scholar
  14. 14.
    Giaume C, Koulakoff A, Roux L, Holcman D, Rouach N (2010) Astroglial networks: a step further in neuroglial and gliovascular interactions. Nat Rev Neurosci 11(2):87–99.. Epub 2010/01/21. Scholar
  15. 15.
    Kuga N, Sasaki T, Takahara Y, Matsuki N, Ikegaya Y (2011) Large-scale calcium waves traveling through astrocytic networks in vivo. J Neurosci 31(7):2607–2614.. Epub 2011/02/18. Scholar
  16. 16.
    Langer J, Stephan J, Theis M, Rose CR (2012) Gap junctions mediate intercellular spread of sodium between hippocampal astrocytes in situ. Glia 60(2):239–252.. Epub 2011/10/26. Scholar
  17. 17.
    Lin JH, Weigel H, Cotrina ML, Liu S, Bueno E, Hansen AJ et al (1998) Gap-junction-mediated propagation and amplification of cell injury. Nat Neurosci. 1(6):494–500. Epub 1999/04/10. Scholar
  18. 18.
    Orkand RK, Nicholls JG, Kuffler SW (1966) Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. J Neurophysiol 29(4):788–806. Epub 1966/07/01CrossRefGoogle Scholar
  19. 19.
    Rose CR, Ransom BR (1997) Gap junctions equalize intracellular Na+ concentration in astrocytes. Glia 20(4):299–307. Epub 1997/08/01CrossRefGoogle Scholar
  20. 20.
    Simard M, Arcuino G, Takano T, Liu QS, Nedergaard M (2003) Signaling at the gliovascular interface. J Neurosci 23(27):9254–9262. Epub 2003/10/10CrossRefGoogle Scholar
  21. 21.
    Wang F, Smith NA, Xu Q, Fujita T, Baba A, Matsuda T et al (2012) Astrocytes modulate neural network activity by Ca(2)+−dependent uptake of extracellular K+. Sci Signal 5(218):ra26. Epub 2012/04/05. Scholar
  22. 22.
    Nagy JI, Rash JE (2000) Connexins and gap junctions of astrocytes and oligodendrocytes in the CNS. Brain Res Brain Res Rev 32(1):29–44. Epub 2000/04/07CrossRefGoogle Scholar
  23. 23.
    Pannasch U, Vargova L, Reingruber J, Ezan P, Holcman D, Giaume C et al (2011) Astroglial networks scale synaptic activity and plasticity. Proc Natl Acad Sci U S A 108(20):8467–8472. Epub 2011/05/04. Scholar
  24. 24.
    Lutz SE, Zhao Y, Gulinello M, Lee SC, Raine CS, Brosnan CF (2009) Deletion of astrocyte connexins 43 and 30 leads to a dysmyelinating phenotype and hippocampal CA1 vacuolation. J Neurosci 29(24):7743–7752. Epub 2009/06/19. Scholar
  25. 25.
    Theis M, Jauch R, Zhuo L, Speidel D, Wallraff A, Doring B et al (2003) Accelerated hippocampal spreading depression and enhanced locomotory activity in mice with astrocyte-directed inactivation of connexin43. J Neurosci 23(3):766–776. Epub 2003/02/08CrossRefGoogle Scholar
  26. 26.
    Spray DC (1996) Physiological properties of gap junction channels in the nervous system. In: Spary DC, Dermietzel R (eds) Gap junctions in the nervous system editors. RG Landes Company, Austin, TX, pp 35–59CrossRefGoogle Scholar
  27. 27.
    Ransom BR (1996) Do glial gap junctions play a role in extracellular ion homeostasis? In: Spary DC, Dermietzel R (eds) Gap junctions in the nervous system editors. RG Landes Company, Austin, TX, pp 159–173. (chapter 6) Epub 1996CrossRefGoogle Scholar
  28. 28.
    Giaume C, McCarthy KD (1996) Control of gap-junctional communication in astrocytic networks. Trends Neurosci 19(8):319–325. Epub 1996/08/01CrossRefGoogle Scholar
  29. 29.
    Nedergaard M, Goldman S (1996;. J Neurophysiol, Chapter 19) Spreading depression—a gap junction mediated event? In: Spary DC, Dermietzel R (eds) Gap junctions in the nervous system editors. RG Landes Company, Austin, TX, pp 301–312CrossRefGoogle Scholar
  30. 30.
    Furshpan EJ, Potter DD (1957) Mechanism of nerve-impulse transmission at a crayfish synapse. Nature 180(4581):342–343. Epub 1957/08/17CrossRefGoogle Scholar
  31. 31.
    Kuffler SW, Potter DD (1964) Glia in the leech central nervous system: physiological properties and neuron-glia relationship. J Neurophysiol 27:290–320.. Epub 1964/03/01. Scholar
  32. 32.
    Muller CM. Gap-junctional communication in mammalian cortical astrocytes: development, modifiability and possible functions. In: Spray DC, Austin DR Gap junctions in the nervous system editors TX: RG Landes Company, pp 203–212. 1996Google Scholar
  33. 33.
    Ma B, Buckalew R, Du Y, Kiyoshi CM, Alford CC, Wang W et al (2016) Gap junction coupling confers isopotentiality on astrocyte syncytium. Glia 64(2):214–226. Scholar
  34. 34.
    Kofuji P, Newman EA (2004) Potassium buffering in the central nervous system. Neuroscience 129(4):1045–1056. Epub 2004/11/25. Scholar
  35. 35.
    Terman D, Zhou M (2019) Modeling the role of the astroctye syncytium and K+ buffering in maintaining neuronal firing patterns. Opera Med Physiol. (in press)Google Scholar
  36. 36.
    Du Y, Ma B, Kiyoshi CM, Alford CC, Wang W, Zhou M (2015.: jn 00206 2015. Epub 2015/03/27) Freshly dissociated mature hippocampal astrocytes exhibit similar passive membrane conductance and low membrane resistance as syncytial coupled astrocytes. J Neurophysiol. Scholar
  37. 37.
    Du Y, Wang W, Lutton AD, Kiyoshi CM, Ma B, Taylor AT et al (2018) Dissipation of transmembrane potassium gradient is the main cause of cerebral ischemia-induced depolarization in astrocytes and neurons. Exp Neurol 303:1–11. Epub 2018/02/07. Scholar
  38. 38.
    Meme W, Vandecasteele M, Giaume C, Venance L (2009) Electrical coupling between hippocampal astrocytes in rat brain slices. Neurosci Res 63(4):236–243.. Epub 2009/01/27. Scholar
  39. 39.
    Kiyoshi CM, Du Y, Zhong S, Wang W, Taylor AT, Xiong B et al (2018) Syncytial isopotentiality: a system-wide electrical feature of astrocytic networks in the brain. Glia 66:2756. Scholar
  40. 40.
    Huang M, Du Y, Kiyoshi CM, Wu X, Askwith CC, McTigue DM et al (2018) Syncytial isopotentiality: an electrical feature of spinal cord astrocyte networks. Neuroglia 1(1):271–279. Epub 2018/08/24. Scholar
  41. 41.
    Kuffler SW, Nicholls JG, Orkand RK (1966) Physiological properties of glial cells in the central nervous system of amphibia. J Neurophysiol 29(4):768–787. Epub 1966/07/01CrossRefGoogle Scholar
  42. 42.
    Yang Y, Vidensky S, Jin L, Jie C, Lorenzini I, Frankl M et al (2011) Molecular comparison of GLT1+ and ALDH1L1+ astrocytes in vivo in astroglial reporter mice. Glia 59(2):200–207. Epub 2010/11/04. Scholar
  43. 43.
    Zhong S, Du Y, Kiyoshi CM, Ma B, Alford CC, Wang Q et al (2016) Electrophysiological behavior of neonatal astrocytes in hippocampal stratum radiatum. Mol Brain 9(1):34. Epub 2016/03/24. Scholar
  44. 44.
    Zhou M, Schools GP, Kimelberg HK (2006) Development of GLAST(+) astrocytes and NG2(+) glia in rat hippocampus CA1: mature astrocytes are electrophysiologically passive. J Neurophysiol 95(1):134–143.. Epub 2005/08/12. Scholar
  45. 45.
    Glitsch HG (2001) Electrophysiology of the sodium-potassium-ATPase in cardiac cells. Physiol Rev 81(4):1791–1826.. Epub 2001/10/03. Scholar
  46. 46.
    Hille B (2001) Ion channels of excitable cells. Sunderland, MA, SinauerGoogle Scholar
  47. 47.
    Fiacco TA, Agulhon C, Taves SR, Petravicz J, Casper KB, Dong X et al (2007) Selective stimulation of astrocyte calcium in situ does not affect neuronal excitatory synaptic activity. Neuron 54(4):611–626. Epub 2007/05/25. Scholar
  48. 48.
    Olsen ML, Khakh BS, Skatchkov SN, Zhou M, Lee CJ, Rouach N (2015) New insights on astrocyte ion channels: critical for homeostasis and neuron-glia signaling. J Neurosci 35(41):13827–13835. Epub 2015/10/16. Scholar
  49. 49.
    Schroder W, Hinterkeuser S, Seifert G, Schramm J, Jabs R, Wilkin GP et al (2000) Functional and molecular properties of human astrocytes in acute hippocampal slices obtained from patients with temporal lobe epilepsy. Epilepsia 41(Suppl 6):S181–S184. Epub 2000/09/22CrossRefGoogle Scholar
  50. 50.
    Zhong S, Du Y, Kiyoshi CM, Ma B, Alford CC, Wang Q et al (2016) Electrophysiological behavior of neonatal astrocytes in hippocampal stratum radiatum. Mol Brain 9:34. Epub 2016/03/24. Scholar
  51. 51.
    Schools GP, Zhou M, Kimelberg HK (2006) Development of gap junctions in hippocampal astrocytes: evidence that whole cell electrophysiological phenotype is an intrinsic property of the individual cell. J Neurophysiol 96(3):1383–1392.. Epub 2006/06/16. Scholar
  52. 52.
    Ma B, Xu G, Wang W, Enyeart JJ, Zhou M (2014) Dual patch voltage clamp study of low membrane resistance astrocytes in situ. Mol Brain 7:18. Epub 2014/03/19. Scholar
  53. 53.
    Zhou M, Xu G, Xie M, Zhang X, Schools GP, Ma L et al (2009) TWIK-1 and TREK-1 are potassium channels contributing significantly to astrocyte passive conductance in rat hippocampal slices. J Neurosci. 29(26):8551–8564. Epub 2009/07/03. Scholar
  54. 54.
    Susaki EA, Tainaka K, Perrin D, Kishino F, Tawara T, Watanabe TM et al (2014) Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis. Cell 157(3):726–739. Epub 2014/04/22. Scholar
  55. 55.
    Susaki EA, Tainaka K, Perrin D, Yukinaga H, Kuno A, Ueda HR (2015) Advanced CUBIC protocols for whole-brain and whole-body clearing and imaging. Nat Protoc 10(11):1709–1727.. Epub 2015/10/09. Scholar
  56. 56.
    Tainaka K, Kubota SI, Suyama TQ, Susaki EA, Perrin D, Ukai-Tadenuma M et al (2014) Whole-body imaging with single-cell resolution by tissue decolorization. Cell 159(4):911–924. Epub 2014/11/25. Scholar
  57. 57.
    Kita Y, Kawakami K, Takahashi Y, Murakami F (2013) Development of cerebellar neurons and glias revealed by in utero electroporation: Golgi-like labeling of cerebellar neurons and glias. PLoS One 8(7):e70091. Epub 2013/07/31. Scholar
  58. 58.
    Chan-Palay V, Palay SL (1972) The form of velate astrocytes in the cerebellar cortex of monkey and rat: high voltage electron microscopy of rapid Golgi preparations. Zeitschrift fur Anatomie und Entwicklungsgeschichte 138(1):1–19. Epub 1972/01/01CrossRefGoogle Scholar
  59. 59.
    Xu G, Wang W, Zhou M (2014) Spatial organization of NG2 glial cells and astrocytes in rat hippocampal CA1 region. Hippocampus 24(4):383–395.. Epub 2013/12/18. Scholar
  60. 60.
    Murphy AD, Hadley RD, Kater SB (1983) Axotomy-induced parallel increases in electrical and dye coupling between identified neurons of Helisoma. J Neurosci 3(7):1422–1429. Epub 1983/07/01CrossRefGoogle Scholar
  61. 61.
    Ransom BR, Kettenmann H (1990) Electrical coupling, without dye coupling, between mammalian astrocytes and oligodendrocytes in cell culture. Glia 3(4):258–266.. Epub 1990/01/01. Scholar
  62. 62.
    Sontheimer H, Waxman SG, Ransom BR (1991) Relationship between Na+ current expression and cell–cell coupling in astrocytes cultured from rat hippocampus. J Neurophysiol 65(4):989–1002. Epub 1991/04/01CrossRefGoogle Scholar
  63. 63.
    Goodenough DA, Paul DL (2009) Gap junctions. Cold Spring Harb Perspect Biol 1(1):a002576. Epub 2010/01/13. Scholar
  64. 64.
    Zahs KR, Newman EA (1997) Asymmetric gap junctional coupling between glial cells in the rat retina. Glia 20(1):10–22. Epub 1997/05/01CrossRefGoogle Scholar
  65. 65.
    Harris AL (2001) Emerging issues of connexin channels: biophysics fills the gap. Q Rev Biophys 34(3):325–472. Epub 2002/02/13CrossRefGoogle Scholar
  66. 66.
    Moreno AP, Rook MB, Fishman GI, Spray DC (1994) Gap junction channels: distinct voltage-sensitive and -insensitive conductance states. Biophys J 67(1):113–119. Epub 1994/07/01. Scholar
  67. 67.
    Spray DC (1996) Physiological properties of gap junction channels in the nervous system. In: Spray DC, Dermietzel R (eds) Gap junction in the nervous system. RG Landes Company, Austin, TX, pp 39–59CrossRefGoogle Scholar
  68. 68.
    Valiunas V, Manthey D, Vogel R, Willecke K, Weingart R (1999) Biophysical properties of mouse connexin30 gap junction channels studied in transfected human HeLa cells. J Physiol 519(Pt 3):631–644. Epub 1999/08/24CrossRefGoogle Scholar
  69. 69.
    Muller T, Moller T, Neuhaus J, Kettenmann H (1996) Electrical coupling among Bergmann glial cells and its modulation by glutamate receptor activation. Glia 17(4):274–284.. Epub 1996/08/01.<274::AID-GLIA2>3.0.CO;2-#CrossRefPubMedGoogle Scholar
  70. 70.
    Houades V, Koulakoff A, Ezan P, Seif I, Giaume C (2008) Gap junction-mediated astrocytic networks in the mouse barrel cortex. J Neurosci 28(20):5207–5217.. Epub 2008/05/16. Scholar
  71. 71.
    Kimelberg HK, Cai Z, Schools G, Zhou M (2000) Acutely isolated astrocytes as models to probe astrocyte functions. Neurochem Int 36(4–5):359–367. Epub 2000/03/25CrossRefGoogle Scholar
  72. 72.
    Bushong EA, Martone ME, Jones YZ, Ellisman MH (2002) Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci 22(1):183–192. Epub 2002/01/05CrossRefGoogle Scholar
  73. 73.
    Zhou M, Kimelberg HK (2000) Freshly isolated astrocytes from rat hippocampus show two distinct current patterns and different [K(+)](o) uptake capabilities. J Neurophysiol 84(6):2746–2757. Epub 2000/12/09CrossRefGoogle Scholar
  74. 74.
    Zhou M, Kimelberg HK (2001) Freshly isolated hippocampal CA1 astrocytes comprise two populations differing in glutamate transporter and AMPA receptor expression. J Neurosci 21(20):7901–7908. Epub 2001/10/06CrossRefGoogle Scholar
  75. 75.
    Wang W, Putra A, Schools GP, Ma B, Chen H, Kaczmarek LK et al (2013) The contribution of TWIK-1 channels to astrocyte K(+) current is limited by retention in intracellular compartments. Front Cell Neurosci 7:246. Epub 2013/12/26. Scholar
  76. 76.
    Wang W, Kiyoshi CM, Du Y, Ma B, Alford CC, Chen H, Zhou M (2016) mGluR3 Activation Recruits Cytoplasmic TWIK-1 Channels to Membrane that Enhances Ammonium Uptake in Hippocampal Astrocytes. Mol Neurobiol 53 (9):6169–6182. Epub 2015/11/10. Scholar
  77. 77.
    Du Y, Kiyoshi CM, Wang Q, Wang W, Ma B, Alford CC et al (2016) Genetic deletion of TREK-1 or TWIK-1/TREK-1 potassium channels does not alter the basic electrophysiological properties of mature hippocampal astrocytes in situ. Front Cell Neurosci 10:13. Epub 2016/02/13. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Yixing Du
    • 1
  • Conrad M. Kiyoshi
    • 1
  • David Terman
    • 2
  • Min Zhou
    • 1
    Email author
  1. 1.Department of NeuroscienceOhio State UniversityColumbusUSA
  2. 2.Department of MathematicsOhio State UniversityColumbusUSA

Personalised recommendations