Skip to main content

Confocal Imaging of Fast Flash Photolysis of Caged Compounds in Cultured Neurons

  • Protocol
  • First Online:
Basic Neurobiology Techniques

Part of the book series: Neuromethods ((NM,volume 152))

Abstract

The enhanced ability to visualize small neuronal compartments in live tissue, such as individual dendritic spine, is accompanied in recent years by a need for a precise, high temporal and spatial resolution ability to activate or suppress electrophysiological as well as biochemical properties within such compartments. Parallel rapid progress in molecular, cellular, and physics methodologies enabled the recruitment of novel technologies to the analysis of a wide spectrum of issues, from long lasting imaging of subcellular compartments in vitro as well as in vivo, to simultaneous recording of activities of networks of hundreds of neurons in behaving animals. In the present review, we will focus on a fast UV flash (4 ns) photolysis of caged molecules in a small sphere (<1 μm) near or within dendritic spines of cultured neurons. This method is faster and cheaper than the commonly used 2-photon uncaging, which requires a large investment in complex equipment. Our method can best be used with two-dimensional networks of neurons, grown in culture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Harris KM, Kater SB (1994) Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function. Ann Rev Neurosci 17:341–371

    Article  CAS  Google Scholar 

  2. Segal M (2016) Dendritic spines: morphological building blocks of memory. Neurobiol Learn Mem. pii: S1074–7427

    Google Scholar 

  3. Sala C, Segal M (2014) Dendritic spines: the locus of structural and functional plasticity. Physiol Rev 94:141–188

    Article  CAS  Google Scholar 

  4. Murnick GJ, Dube G, Krupa B, Liu G (2002) High resolution iontophoresis for single synapse stimulation. J Neurosci Methods 116:65–75

    Article  CAS  Google Scholar 

  5. Adams SR, Tsien RY (1993) Controlling cell chemistry with caged compounds. Annu Rev Physiol 55:755–784

    Article  CAS  Google Scholar 

  6. Augustine GJ (2001) Illuminating the location of brain glutamate receptors. Nat Neurosci 4:1051–1052

    Article  CAS  Google Scholar 

  7. Canepari M, Nelson L, Papageorgiou G, Corrie JE, Ogden D (2001) Photo chemicaland pharmacological evaluation of 7-nitroindolinyl- and4-methoxy-7-nitroindolinyl-amino acids as novel, fast caged neurotransmitters. J Neurosci Methods 112:29–42

    Article  CAS  Google Scholar 

  8. Delaney KR, Zucker RS (1990) Calcium released by photolysis of DM-nitrophen stimulates transmitter release at squid giant synapse. J Physiol 426:473–498

    Article  CAS  Google Scholar 

  9. Zucker RS (1992 Jan) Effects of photolabile calcium chelators on fluorescent calcium indicators. Cell Calcium 13(1):29–40

    Article  CAS  Google Scholar 

  10. Brown EB, Shear JB, Adams SR, Tsien RY, Webb WW (1999) Photolysis of caged calcium in femtoliter volumes using two photon excitation. Biophys J 76:489–499

    Article  CAS  Google Scholar 

  11. Callaway EM, Katz LC (1993) Photo stimulation using caged glutamate reveals functional circuitry in living brain slices. Proc Natl Acad Sci USA 88:7661–7665

    Article  Google Scholar 

  12. Dodt HU, Eder M, Schierloh A, Zieglgansberger W (2002) Infrared-guided laser stimulation of neurons in brain slices. Sci STKE 120(2):1–11

    Google Scholar 

  13. Parpura V, Haydon PG (1999) ‘Uncaging’ using optical fibers to deliver UV light directly to the sample. Croat Med J 40:340–345

    CAS  PubMed  Google Scholar 

  14. Pettit DL, Wang SS, Gee KR, Augustine GJ (1997) Chemical two-photon uncaging: a novel approach to mapping glutamate receptors. Neuron 19:465–471

    Article  CAS  Google Scholar 

  15. Svoboda K, Tank DW, Denk W (1996) Direct measurement of coupling between dendritic spines and shafts. Science 272:716–719

    Article  CAS  Google Scholar 

  16. Wang SS, Khiroug L, Augustine GJ (2000) Quantification of spread of cerebellar long-term depression with chemical two-photon uncaging of glutamate. Proc Natl Acad Sci U S A 97:8635–8640

    Article  CAS  Google Scholar 

  17. Engert F, Paulus GG, Bonhoeffer T (1996 May) A low-cost UV laser for flash photolysis of caged compounds. J Neurosci Methods 66(1):47–54

    Article  CAS  Google Scholar 

  18. Markram H, Segal M (1992) The inositol 1,4,5-trisphosphate pathway mediates cholinergic potentiation of rat hippocampal neuronal responses to NMDA. J Physiol 447:513–533

    Article  CAS  Google Scholar 

  19. Korkotian E, Segal M (2006) Spatially confined diffusion of calcium in dendrites of hippocampal neurons revealed by flash photolysis of caged calcium. Cell Calcium 40(5–6):441–449

    Article  CAS  Google Scholar 

  20. Berlin S, Carroll EC, Newman ZL, Okada HO, Quinn CM, Kallman B, Rockwell NC, Martin SS, Lagarias JC, Isacoff EY (2015) Photoactivatable genetically encoded calcium indicators for targeted neuronal imaging. Nat Methods 12(9):852–858. https://doi.org/10.1038/nmeth.3480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Barber DM, Schönberger M, Burgstaller J, Levitz J, Weaver CD, Isacoff EY, Baier H, Trauner D (2016) Optical control of neuronal activity using a light-operated GIRK channel opener (LOGO). Chem Sci 7(3):2347–2352. https://doi.org/10.1039/C5SC04084A

    Article  CAS  PubMed  Google Scholar 

  22. Gurney AM, Lester HA (1987) Light-flash physiology with synthetic photosensitive compounds. Physiol Rev 67(2):583–617

    Article  CAS  Google Scholar 

  23. Kaplan JH, Somlyo AP (1989) Flash photolysis of caged compounds: new tools for cellular physiology. Trends Neurosci 12(2):54–59

    Article  CAS  Google Scholar 

  24. Korkotian E, Oron D, Silberberg Y, Segal M (2004) Confocal microscopic imaging of fast UV-laser photolysis of caged compounds. J Neurosci Methods 133(1–2):153–159

    Article  CAS  Google Scholar 

  25. Korkotian E, Segal M (2011) Synaptopodin regulates release of calcium from stores in dendritic spines of cultured hippocampal neurons. J Physiol Lond 589(Pt 24):5987–5995

    Article  CAS  Google Scholar 

  26. Korkotian E, Holcman D, Segal M (2004) Dynamic regulation of spine-dendrite coupling in cultured hippocampal neurons. Eur J Neurosci 20:2649–2663

    Article  Google Scholar 

  27. Kandler K, Katz LC, Kauer JA (1998) Focal photolysis of caged glutamate produces long term depression of hippocampal glutamate receptors. Nat Neurosci 1:119–123

    Article  CAS  Google Scholar 

  28. Matsuzaki M, Ellis-Davies GCR, Nemoto T, Miyashita Y, Iino M, Kasai H (2001) Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat Neurosci 4:1086–1092

    Article  CAS  Google Scholar 

  29. Rossi FM, Margulis M, Tang CM, Kao JP (1997) N-Nmoc-l-glutamate, a new caged glutamate with high chemical stability and low pre-photolysis activity. J Biol Chem 272:32933–32939

    Article  CAS  Google Scholar 

  30. Korkotian E, Segal M (2007) Morphological constraints on calcium dependent glutamate receptor trafficking into individual dendritic spine. Cell Calcium 42(1):41–57

    Article  CAS  Google Scholar 

  31. Vlachos A, Korkotian E, Schonfeld E, Copanaki E, Deller T, Segal M (2009) Synaptopodin regulates plasticity of dendritic spines in hippocampal neurons. J Neurosci 29:1017–1033

    Article  CAS  Google Scholar 

  32. Midorikawa M, Sakaba T (2015) Imaging exocytosis of single synaptic vesicles at a fast CNS presynaptic terminal. Neuron 88(3):492–498. https://doi.org/10.1016/j.neuron.2015.09.047

    Article  CAS  PubMed  Google Scholar 

  33. MacGillavry HD, Blanpied TA (2013) Single-molecule tracking photoactivated localization microscopy to map nano-scale structure and dynamics in living spines. Curr Protoc Neurosci 65:2.20.1–2.2019. https://doi.org/10.1002/0471142301

    Article  Google Scholar 

  34. Ehlers MD, Heine M, Groc L, Lee MC, Choquet D (2007) Diffusional trapping of GluR1 AMPA receptors by input-specific synaptic activity. Neuron 54(3):447–460

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Menahem Segal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Korkotian, E., Segal, M. (2020). Confocal Imaging of Fast Flash Photolysis of Caged Compounds in Cultured Neurons. In: Wright, N. (eds) Basic Neurobiology Techniques . Neuromethods, vol 152. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9944-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9944-6_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9943-9

  • Online ISBN: 978-1-4939-9944-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics