Semiconductor Quantum Dots for Visualization and Sensing in Neuronal Cell Systems

  • Lauren D. Field
  • Yung Chia Chen
  • James B. DelehantyEmail author
Part of the Neuromethods book series (NM, volume 152)


Fluorescence imaging continues to play an increasingly vital role in neurobiology from the use of organic fluorophore dyes to genetically encoded proteins. Semiconductor nanocrystals or quantum dots have emerged as a new class of photostable fluorophores for use in a wide array of biological applications ranging from labeling and imaging to sensing and drug delivery. Here, we highlight several applications of quantum dots for imaging and sensing across a variety of neuronal cell platforms. These include the specific labeling of neurons tissue slices, the tracking of neuron movement in brain development, enhanced voltage sensing, and the guided patch clamp of neurons in vivo during electrophysiology. Our goal is to provide the reader with a survey of the use of quantum dots in these applications along with experimental notes and guidelines for their successful use in these applications.

Key words

Fluorescence Nanoparticle Neuron Quantum dot Voltage Brain Patch clamp 



This research was supported by funding from the NRL Nanoscience Institute and Base Funding Program. LDF is a PhD candidate in the Fischell Department of Bioengineering, University of Maryland, MD, USA. YC was supported by a postdoctoral research associateship through the American Association for Engineering Education.


  1. 1.
    Combs CA (2010) Fluorescence microscopy: a concise guide to current imaging methods. Curr Protoc Neurosci 50(1):2–1Google Scholar
  2. 2.
    Taraska JW, Zagotta WN (2010) Fluorescence applications in molecular neurobiology. Neuron 66(2):170–189CrossRefGoogle Scholar
  3. 3.
    Chen T-W et al (2013) Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499(7458):295–300CrossRefGoogle Scholar
  4. 4.
    Venkatachalam V, Cohen AE (2014) Imaging GFP-based reporters in neurons with multiwavelength optogenetic control. Biophys J 107(7):1554–1563CrossRefGoogle Scholar
  5. 5.
    Nakajima R et al (2016) Optogenetic monitoring of synaptic activity with genetically encoded voltage indicators. Front Synaptic Neurosci 8:22CrossRefGoogle Scholar
  6. 6.
    Hochbaum DR et al (2014) All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins. Nat Methods 11(8):825–833CrossRefGoogle Scholar
  7. 7.
    Boeneman K et al (2009) Sensing caspase 3 activity with quantum dot−fluorescent protein assemblies. J Am Chem Soc 131(11):3828–3829CrossRefGoogle Scholar
  8. 8.
    Delehanty JB et al (2013) Site-specific cellular delivery of quantum dots with chemoselectively-assembled modular peptides. Chem Commun (Camb) 49(72):7878–7880CrossRefGoogle Scholar
  9. 9.
    Delehanty JB et al (2010) Delivering quantum dot-peptide bioconjugates to the cellular cytosol: escaping from the endolysosomal system. Integr Biol 2(5–6):265–277CrossRefGoogle Scholar
  10. 10.
    Delehanty JB et al (2011) Spatiotemporal multicolor labeling of individual cells using peptide-functionalized quantum dots and mixed delivery techniques. J Am Chem Soc 133(27):10482–10489CrossRefGoogle Scholar
  11. 11.
    Field L et al (2015) Modulation of intracellular quantum dot to fluorescent protein Förster resonance energy transfer via customized ligands and spatial control of donor–acceptor assembly. Sensors 15(12):29810CrossRefGoogle Scholar
  12. 12.
    Medintz IL et al (2008) Intracellular delivery of quantum dot-protein cargos mediated by cell penetrating peptides. Bioconjug Chem 19:1785–1795CrossRefGoogle Scholar
  13. 13.
    Walters R et al (2012) Nanoparticle targeting to neurons in a rat hippocampal slice culture model. ASN Neuro 4(6):383–392CrossRefGoogle Scholar
  14. 14.
    Walters R et al (2015) The role of negative charge in the delivery of quantum dots to neurons. ASN Neuro 7(4):1–12CrossRefGoogle Scholar
  15. 15.
    Agarwal R et al (2015) Delivery and tracking of quantum dot peptide bioconjugates in an intact developing avian brain. ACS Chem Nerosci 6(3):494–504CrossRefGoogle Scholar
  16. 16.
    Clapp AR, Goldman ER, Mattoussi H (2006) Capping of CdSe-ZnS quantum dots with DHLA and subsequent conjugation with proteins. Nat Protoc 1(3):1258–1266CrossRefGoogle Scholar
  17. 17.
    Snee PT et al (2005) Whispering-gallery-mode lasing from a semiconductor nanocrystal/microsphere resonator composite. Adv Mater 17:1131CrossRefGoogle Scholar
  18. 18.
    Li JJ et al (2003) Large-scale synthesis of nearly monodisperse CdSe/CdS Core/Shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. J Am Chem Soc 125:12567CrossRefGoogle Scholar
  19. 19.
    Blackman B, Battaglia D, Peng XG (2008) Bright and water-soluble near Ir-emitting Cdse/Cdte/ZnSe type-II/type-I nanocrystals, tuning the efficiency and stability by growth. Chem Mater 20:4847CrossRefGoogle Scholar
  20. 20.
    Susumu K et al (2014) A new family of pyridine-appended multidentate polymers as hydrophilic surface ligands for preparing stable biocompatible quantum dots. Chem Mater 26(18):5327–5344CrossRefGoogle Scholar
  21. 21.
    Mei BC et al (2009) Polyethylene glycol-based bidentate ligands to enhance quantum dot and gold nanoparticle stability in biological media. Nat Protoc 4:412–423CrossRefGoogle Scholar
  22. 22.
    Nag OK et al (2017) Quantum dot–peptide–fullerene bioconjugates for visualization of in vitro and in vivo cellular membrane potential. ACS Nano 11(6):5598–5613CrossRefGoogle Scholar
  23. 23.
    Delehanty JB et al (2013) Controlling the actuation of therapeutic nanomaterials: enabling nanoparticle-mediated drug delivery. Ther Deliv 4(11):1411–1429CrossRefGoogle Scholar
  24. 24.
    Prasuhn DE et al (2010) Polyvalent display and packing of peptides and proteins on semiconductor quantum dots: predicted versus experimental results. Small 6(4):555–564CrossRefGoogle Scholar
  25. 25.
    Field LD et al (2015) Modulation of intracellular quantum dot to fluorescent protein Forster resonance energy transfer via customized ligands and spatial control of donor-acceptor assembly. Sensors 15(12):30457–30468CrossRefGoogle Scholar
  26. 26.
    Stewart MH et al (2010) Multidentate poly(ethylene glycol) ligands provide colloidal stability to semiconductor and metallic nanocrystals in extreme conditions. J Am Chem Soc 132:9804–9813CrossRefGoogle Scholar
  27. 27.
    Clapp AR et al (2007) Two-photon excitation of quantum dot-based fluorescence resonance energy transfer and its applications. Adv Mater 19:1921CrossRefGoogle Scholar
  28. 28.
    Resch-Genger U et al (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5(9):763–775CrossRefGoogle Scholar
  29. 29.
    Margrie TW et al (2003) Targeted whole-cell recordings in the mammalian brain in vivo. Neuron 39(6):911–918CrossRefGoogle Scholar
  30. 30.
    Komai S et al (2006) Two-photon targeted patching (TPTP) in vivo. Nat Protoc 1(2):647–652CrossRefGoogle Scholar
  31. 31.
    Kitamura K et al (2008) Targeted patch-clamp recordings and single-cell electroporation of unlabeled neurons in vivo. Nat Methods 5(1):61–67CrossRefGoogle Scholar
  32. 32.
    Weiss PS (2013) President Obama announces the BRAIN initiative. ACS Nano 7(4):2873–2874CrossRefGoogle Scholar
  33. 33.
    Tsytsarev V et al (2008) Imaging cortical electrical stimulation in vivo: fast intrinsic optical signal versus voltage-sensitive dyes. Opt Lett 33(9):1032–1034CrossRefGoogle Scholar
  34. 34.
    Delehanty JB, Mattoussi H, Medintz IL (2009) Delivering quantum dots into cells: strategies, progress and remaining issues. Anal Bioanal Chem 393(4):1091–1105CrossRefGoogle Scholar
  35. 35.
    Breger J, Delehanty JB, Medintz IL (2015) Continuing progress toward controlled intracellular delivery of semiconductor quantum dots. Wiley Interdiscip Rev Nanomed Nanobiotechnol 7(2):131–151CrossRefGoogle Scholar
  36. 36.
    Delehanty JB et al (2009) Quantum dots: a powerful tool for understanding the intricacies of nanoparticle-mediated drug delivery. Expert Opin Drug Deliv 6:1091–1112CrossRefGoogle Scholar
  37. 37.
    Andrasfalvy BK et al (2014) Quantum dot-based multiphoton fluorescent pipettes for targeted neuronal electrophysiology. Nat Methods 11(12):1237–1241CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Lauren D. Field
    • 1
  • Yung Chia Chen
    • 1
  • James B. Delehanty
    • 1
    Email author
  1. 1.US Naval Research LaboratoryCenter for Bio/Molecular Science and EngineeringWashington, DCUSA

Personalised recommendations