Bioluminescent Imaging pp 69-80 | Cite as
In Vivo Bioluminescent Imaging of Yersinia ruckeri Pathogenesis in Fish
Protocol
First Online:
Abstract
Bioluminescent reporters and advanced luciferase technologies are useful to study host–pathogen interactions. This chapter describes the use of the luxCDABE operon from Photorhabdus luminescens as a tool to analyze the progression of the fish pathogen Yersinia ruckeri during the infection of rainbow trout, as well as the quantification of promoter activity of specific bacterial genes during host colonization.
Key words
Yersinia ruckeri Rainbow trout Infection process Bioluminescence imaging luxCDABE operon IVIS® Imaging System Promoter activityReferences
- 1.Waidmann MS, Bleichrodt FS, Laslo T, Riedel CU (2011) Bacterial luciferase reporters: the Swiss army knife of molecular biology. Bioeng Bugs 2:8–16. https://doi.org/10.4161/bbug.2.1.13566CrossRefPubMedGoogle Scholar
- 2.Contag CH, Contag PR, Mullins JI, Spilman SD, Stevenson DK, Benaron DA (1995) Photonic detection of bacterial pathogen in living host. Mol Microbiol 18:593–603. https://doi.org/10.1111/j.1365-2958.1995.mmi18040593.xCrossRefPubMedGoogle Scholar
- 3.Francis KP, Joh D, Bellinger-Kawahara C, Hawkinson MJ, Purchio TF, Contag PR (2000) Monitoring bioluminescent Staphylococcus aureus infections in living mice using a novel luxABCDE construct. Infect Immun 68:3594–35600CrossRefGoogle Scholar
- 4.Francis KP, Yu J, Bellinger-Kawahara C, Joh D, Hawkinson MJ et al (2001) Visualizing pneumococcal infections in the lungs of live mice using bioluminescence Streptococcus pneumoniae transformed with a novel Gram-positive lux transposon. Infect Immun 69:3350–3358. https://doi.org/10.1128/IAI.69.5.3350-3358.2001CrossRefPubMedPubMedCentralGoogle Scholar
- 5.Meighen EA, Szittner RB (1992) Multiple repetitive elements and organization of the lux operons of luminescent terrestrial bacteria. J Bacteriol 174:5371–5381. https://doi.org/10.1128/jb.174.16.5371-5381.1992CrossRefPubMedPubMedCentralGoogle Scholar
- 6.Fernandez L, Mendez J, Guijarro JA (2007) Molecular virulence mechanisms of the fish pathogen Yersinia ruckeri. Vet Microbiol 125:1–10. https://doi.org/10.1016/j.vetmic.2007.06.013CrossRefPubMedGoogle Scholar
- 7.Guijarro JA, Garcia-Torrico AI, Cascales D, Mendez J (2018) The infection process of Yersinia ruckeri: reviewing the pieces of the jigsaw puzzle. Front Cell Infect Microbiol 8:218. https://doi.org/10.3389/fcimb.2018.00218CrossRefPubMedPubMedCentralGoogle Scholar
- 8.Mendez J, Guijarro JA (2012) In vivo monitoring of Yersinia ruckeri in fish tissues: progression and virulence gene expression. Environ Microbiol Rep 5:179–185. https://doi.org/10.1111/1758-2229.12030CrossRefGoogle Scholar
- 9.Romalde JL, Conchas RF, Toranzo AE (1991) Evidence that Yersinia ruckeri possesses a high affinity iron uptake system. FEMS Microbiol Lett 80:121–126. https://doi.org/10.1111/j.1574-6968.1991.tb04647.xCrossRefGoogle Scholar
- 10.Simon R, Priefer U, Pühler A (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Nat Biotechnol 1:784–791. https://doi.org/10.1038/nbt1183-784CrossRefGoogle Scholar
- 11.Bjarnason J, Southward CM, Surette MG (2003) Genomic profiling of iron-responsive genes in Salmonella enterica serovar Typhimurium by high-throughput screening of a random promoter library. J Bacteriol 185:4973–4982. https://doi.org/10.1128/JB.185.16.4973-4982.2003CrossRefPubMedPubMedCentralGoogle Scholar
Copyright information
© Springer Science+Business Media, LLC, part of Springer Nature 2020