Advertisement

Microscopy Methods for Imaging MIF and Its Interaction Partners

  • Kirstin D. ElgassEmail author
  • Sarah J. Creed
  • Ina Rudloff
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2080)

Abstract

Fluorescence microscopy has become a powerful tool to investigate proteins in their natural environment. Well-established techniques like widefield and confocal fluorescence microscopy have commonly been used for decades to visualize biomolecules in single cells and tissue sections. Live cell microscopy allows for the investigation of biomolecular trafficking, and other specialized techniques, such as proximity ligation assays (PLA) and fluorescence lifetime imaging microscopy (FLIM), can be used to study interactions between biomolecules of interest. Finally, with the most recent rise of optical super-resolution microscopy, we can investigate target biomolecules in situ with unprecedented detail on the nanometer scale. Here, we discuss various optical microscopy techniques that have successfully been used to image MIF. We highlight applications, advantages, and limitations of each technique. The techniques described here can easily be adapted to investigate other target proteins, their localization, interaction partners, and mechanisms of action.

Key words

Fluorescence Confocal microscopy FLIM PLA Super-resolution microscopy 

References

  1. 1.
    Combs CA (2010) Fluorescence microscopy: a concise guide to current imaging methods. Curr Protoc Neurosci Chapter 2:Unit2.1.  https://doi.org/10.1002/0471142301.ns0201s50
  2. 2.
    Combs CA, Shroff H (2017) Fluorescence microscopy: a concise guide to current imaging methods. Curr Protoc Neurosci 79:2.1.1–2.1.25.  https://doi.org/10.1002/cpns.29CrossRefGoogle Scholar
  3. 3.
    Pawley JB (2006) Handbook of biological confocal microscopy. Springer, New YorkCrossRefGoogle Scholar
  4. 4.
    Hibbs AR (2004) Confocal microscopy for Biologists. Springer, New YorkCrossRefGoogle Scholar
  5. 5.
    Calandra T, Roger T (2003) Macrophage migration inhibitory factor: a regulator of innate immunity. Nat Rev Immunol 3(10):791–800.  https://doi.org/10.1038/nri1200CrossRefGoogle Scholar
  6. 6.
    Kim TK, Eberwine JH (2010) Mammalian cell transfection: the present and the future. Anal Bioanal Chem 397(8):3173–3178.  https://doi.org/10.1007/s00216-010-3821-6CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Fredriksson S, Gullberg M, Jarvius J, Olsson C, Pietras K, Gústafsdóttir SM, Östman A, Landegren U (2002) Protein detection using proximity-dependent DNA ligation assays. Nat Biotechnol 20:473.  https://doi.org/10.1038/nbt0502-473CrossRefPubMedGoogle Scholar
  8. 8.
    Olink - Precision Proteomics for Life. https://www.olink.com/
  9. 9.
    Lang T, Lee JPW, Elgass K, Pinar AA, Tate MD, Aitken EH, Fan H, Creed SJ, Deen NS, Traore DAK (2018) Macrophage migration inhibitory factor is required for NLRP3 inflammasome activation. Nat Commun 9(1):2223.  https://doi.org/10.1038/s41467-018-04581-2CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Lakowicz JR (2006) Principles of Fluorescence Spectroscopy. Springer, New YorkCrossRefGoogle Scholar
  11. 11.
    Becker W (2017) The bh TCSPC handbook. Becker and Hickl GmbH, BerlinGoogle Scholar
  12. 12.
    Becker W (2012) Fluorescence lifetime imaging – techniques and applications. J Microsc 247(2):119–136.  https://doi.org/10.1111/j.1365-2818.2012.03618.xCrossRefPubMedGoogle Scholar
  13. 13.
    Bastiaens PI, Squire A (1999) Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell. Trends Cell Biol 9(2):48–52CrossRefGoogle Scholar
  14. 14.
    Bajar BT, Wang ES, Zhang S, Lin MZ, Chu J (2016) A guide to fluorescent protein FRET Pairs. Sensors (Basel, Switzerland) 16(9).  https://doi.org/10.3390/s16091488CrossRefGoogle Scholar
  15. 15.
    Rust MJ, Bates M, Zhuang X (2006) Stochastic optical reconstruction microscopy (STORM) provides sub-diffraction-limit image resolution. Nat Methods 3(10):793–795.  https://doi.org/10.1038/nmeth929CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    van de Linde S, Loeschberger A, Klein T, Heidbreder M, Wolter S, Heilemann M, Sauer M (2011) Direct stochastic optical reconstruction microscopy with standard fluorescent probes. Nat Protoc 6(7):991–1009.  https://doi.org/10.1038/nprot.2011.336CrossRefPubMedGoogle Scholar
  17. 17.
    Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19(11):780–782.  https://doi.org/10.1364/OL.19.000780CrossRefPubMedGoogle Scholar
  18. 18.
    Hein B, Willig KI, Hell SW (2008) Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell. Proc Natl Acad Sci U S A 105(38):14271–14276.  https://doi.org/10.1073/pnas.0807705105CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Sauer M, Heilemann M (2017) Single-molecule localization microscopy in eukaryotes. Chem Rev 117(11):7478–7509.  https://doi.org/10.1021/acs.chemrev.6b00667CrossRefPubMedGoogle Scholar
  20. 20.
    Allen JR, Ross ST, Davidson MW (2013) Single molecule localization microscopy for superresolution. J Opt 15:094001.  https://doi.org/10.1088/2040-8978/15/9/094001CrossRefGoogle Scholar
  21. 21.
    Gibson TJ, Seiler M, Veitia RA (2013) The transience of transient overexpression. Nat Methods 10:715.  https://doi.org/10.1038/nmeth.2534CrossRefPubMedGoogle Scholar
  22. 22.
    Allen JR, Ross ST, Davidson MW (2013) Sample preparation for single molecule localization microscopy. Phys Chem Chem Phys 15(43):18771–18783.  https://doi.org/10.1039/c3cp53719fCrossRefPubMedGoogle Scholar
  23. 23.
    Whelan DR, Bell TD (2015) Image artifacts in single molecule localization microscopy: why optimization of sample preparation protocols matters. Sci Rep 5:7924.  https://doi.org/10.1038/srep07924CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Pleiner T, Bates M (2015) Nanobodies: site-specific labeling for super-resolution imaging, rapid epitope-mapping and native protein complex isolation. Elife 4:e11349.  https://doi.org/10.7554/eLife.11349CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Traenkle B, Rothbauer U (2017) Under the microscope: single-domain antibodies for live-cell imaging and super-resolution microscopy. Front Immunol 8:1030.  https://doi.org/10.3389/fimmu.2017.01030CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Schnitzbauer J, Strauss MT, Schlichthaerle T, Schueder F, Jungmann R (2017) Super-resolution microscopy with DNA-PAINT. Nat Protoc 12(6):1198–1228.  https://doi.org/10.1038/nprot.2017.024CrossRefPubMedGoogle Scholar
  27. 27.
    Nikic-Spiegel I (2018) Genetic code expansion- and click chemistry-based site-specific protein labeling for intracellular DNA-PAINT imaging. Methods Mol Biol 1728:279–295.  https://doi.org/10.1007/978-1-4939-7574-7_18CrossRefPubMedGoogle Scholar
  28. 28.
    Korczynski J, Wlodarczyk J (2009) Fluorescence lifetime imaging microscopy (FLIM) in biological and medical research. Postepy Biochem 55(4):434–440PubMedGoogle Scholar
  29. 29.
    van Munster EB, Gadella TW (2005) Fluorescence lifetime imaging microscopy (FLIM). Adv Biochem Eng Biotechnol 95:143–175PubMedGoogle Scholar
  30. 30.
    Wheeler A, Henriques R (2017) Standard and super-resolution bioimaging data analysis: a primer. Wiley, Hoboken, NJCrossRefGoogle Scholar
  31. 31.
    Lee A, Tsekouras K, Calderon C, Bustamante C, Presse S (2017) Unraveling the thousand word picture: an introduction to super-resolution data analysis. Chem Rev 117(11):7276–7330.  https://doi.org/10.1021/acs.chemrev.6b00729CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Kirstin D. Elgass
    • 1
    Email author
  • Sarah J. Creed
    • 1
  • Ina Rudloff
    • 2
    • 3
  1. 1.Monash Micro Imaging, Hudson Institute of Medical ResearchClaytonAustralia
  2. 2.The Ritchie Centre, Hudson Institute of Medical ResearchClaytonAustralia
  3. 3.Department of PaediatricsMonash UniversityClaytonAustralia

Personalised recommendations