Investigating MIF in Mouse Model of Gout

  • Izabela Galvão
  • Allysson Cramer
  • Flavio Almeida Amaral
Part of the Methods in Molecular Biology book series (MIMB, volume 2080)


Mice are widely used to assess the pathogenesis of diseases. An experimental model of gout consists of the injection of uric acid crystals into joints of mice, which reproduce inflammation and functional changes of the human disease. Uric acid crystals activate synoviocytes culminating in the release of IL-1β and neutrophil recruitment, key inflammatory elements in gouty arthritis. Since MIF plays an important role in orchestrating gout inflammation, we detail valuable procedures to investigate uric acid crystal-induced joint inflammation in mice and give options for further understanding the functions of MIF in gouty arthritis in vivo and in vitro.

Key words

Gout Mouse model of gout Arthritis MIF 



We thank Ilma Marçal for technical assistance. We thank the funding agencies Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (CNPq, Brazil), Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG, Brazil), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for financial support.


  1. 1.
    Martinon F et al (2006) Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440(7081):237–241CrossRefGoogle Scholar
  2. 2.
    So AK, Martinon F (2017) Inflammation in gout: mechanisms and therapeutic targets. Nat Rev Rheumatol 13(11):639–647CrossRefGoogle Scholar
  3. 3.
    Amaral FA et al (2012) NLRP3 inflammasome-mediated neutrophil recruitment and hypernociception depend on leukotriene B(4) in a murine model of gout. Arthritis Rheum 64(2):474–484CrossRefGoogle Scholar
  4. 4.
    Galvao I et al (2017) Annexin A1 promotes timely resolution of inflammation in murine gout. Eur J Immunol 47(3):585–596CrossRefGoogle Scholar
  5. 5.
    Johnson RJ, Lanaspa MA, Gaucher EA (2011) Uric acid: a danger signal from the RNA world that may have a role in the epidemic of obesity, metabolic syndrome, and cardiorenal disease: evolutionary considerations. Semin Nephrol 31(5):394–399CrossRefGoogle Scholar
  6. 6.
    Morand EF, Leech M, Bernhagen J (2006) MIF: a new cytokine link between rheumatoid arthritis and atherosclerosis. Nat Rev Drug Discov 5(5):399–410CrossRefGoogle Scholar
  7. 7.
    Santos LL et al (2008) Reduced arthritis in MIF deficient mice is associated with reduced T cell activation: down-regulation of ERK MAP kinase phosphorylation. Clin Exp Immunol 152(2):372–380CrossRefGoogle Scholar
  8. 8.
    Gregory JL et al (2006) Macrophage migration inhibitory factor induces macrophage recruitment via CC chemokine ligand 2. J Immunol 177(11):8072–8079CrossRefGoogle Scholar
  9. 9.
    Daryadel A et al (2006) Apoptotic neutrophils release macrophage migration inhibitory factor upon stimulation with tumor necrosis factor-alpha. J Biol Chem 281(37):27653–27661CrossRefGoogle Scholar
  10. 10.
    Galvao I et al (2016) Macrophage migration inhibitory factor drives neutrophil accumulation by facilitating IL-1beta production in a murine model of acute gout. J Leukoc Biol 99(6):1035–1043CrossRefGoogle Scholar
  11. 11.
    Amaral FA, Boff D, Teixeira MM (2016) In vivo models to study chemokine biology. Methods Enzymol 570:261–280CrossRefGoogle Scholar
  12. 12.
    Zhang X, Goncalves R, Mosser DM (2008) The isolation and characterization of murine macrophages. Curr Protoc Immunol., Chapter 14:Unit 14 1Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Izabela Galvão
    • 1
  • Allysson Cramer
    • 1
  • Flavio Almeida Amaral
    • 1
  1. 1.Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations