Antibody-Drug Conjugates pp 131-145 | Cite as
Antibody Conjugations via Glycosyl Remodeling
Protocol
First Online:
Abstract
The antibody Fc-glycans are interesting targets for conjugation of cytotoxic compounds due to their localization and their chemical composition. In striving to obtain site-specific conjugates, the antibody Fc-glycans have been explored in numerous ways. Here we present a two-step enzymatic methodology coupled to click-chemistry for conjugation at the core GlcNAc of the Fc-glycan resulting in ADCs that are homogenous with a DAR 2.0, retain antigen binding, and display cytotoxic anti-tumor effects both in vitro and in vivo.
Key words
ADC conjugation Antibody glycosylation Glycosyl remodeling Site-specific conjugation Click-chemistryReferences
- 1.Junutula JR, Raab H, Clark S, Bhakta S, Leipold DD et al (2008) Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat Biotechnol 26(8):925–932. https://doi.org/10.1038/nbt.1480CrossRefGoogle Scholar
- 2.Beck A, Goetsch L, Dumontet C, Corvaia N (2017) Strategies and challenges for the next generation of antibody–drug conjugates. Nat Rev Drug Discov 16(5):315–337. https://doi.org/10.1038/nrd.2016.268CrossRefGoogle Scholar
- 3.Chudasama V, Maruani A, Caddick S (2016) Recent advances in the construction of antibody–drug conjugates. Nat Chem 8(2):114–119. https://doi.org/10.1038/nchem.2415CrossRefGoogle Scholar
- 4.Arnold JN, Wormald MR, Sim RB, Rudd PM, Dwek RA (2007) The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu Rev Immunol 25:21–50. https://doi.org/10.1146/annurev.immunol.25.022106.141702CrossRefPubMedGoogle Scholar
- 5.Jefferis R (2009) Recombinant antibody therapeutics: the impact of glycosylation on mechanisms of action. Trends Pharmacol Sci 30(7):356–362. https://doi.org/10.1016/j.tips.2009.04.007CrossRefPubMedGoogle Scholar
- 6.Nimmerjahn F, Ravetch JV (2007) Fc-receptors as regulators of immunity. Adv Immunol 96:179–204. https://doi.org/10.1016/S0065-2776(07)96005-8CrossRefGoogle Scholar
- 7.Zuberbühler K, Casi G, Bernandes GJ, Neri D (2012) Fucose-specific conjugation of hydrazide derivatives to a vascular-targeting monoclonal antibody in IgG format. Chem Commun 48(56):7100–7102. https://doi.org/10.1039/c2cc32412aCrossRefGoogle Scholar
- 8.Okeley NM, Toki BE, Zhang X, Jeffrey SC, Burke PJ, Alley SC, Senter PD (2013) Metabolic engineering of monoclonal antibody carbohydrates for antibody–drug conjugation. Bioconjug Chem 24(10):1650–1655. https://doi.org/10.1021/bc4002695CrossRefPubMedGoogle Scholar
- 9.Zhou Q, Stefano JE, Manning C, Kyazike J et al (2014) Site-specific antibody–drug conjugation through glycoengineering. Bioconjug Chem 25(3):510–520. https://doi.org/10.1021/bc400505qCrossRefPubMedGoogle Scholar
- 10.Wang W, Vlasak J, Li Y, Pristatsky P et al (2011) Impact of methionine oxidation in human IgG1 Fc on serum half-life of monoclonal antibodies. Mol Immunol 48(6–7):860–866. https://doi.org/10.1016/j.molimm.2010.12.009CrossRefPubMedGoogle Scholar
- 11.Li X, Fang T, Boons GJ (2014) Preparation of well-defined antibody-drug conjugates through glycan remodeling and strain-promoted azide-alkyne cycloadditions. Angew Chem Int Ed Engl 53(28):7179–7182. https://doi.org/10.1002/anie.201402606CrossRefPubMedPubMedCentralGoogle Scholar
- 12.Ramakrishnan B, Qasba PK (2002) Structure-based design of beta 1,4-galactosyltransferase I (beta 4Gal-T1) with equally efficient N-acetylgalactosaminyltransferase activity: point mutation broadens beta 4Gal-T1 donor specificity. J Biol Chem 277(23):20833–20839. https://doi.org/10.1074/jbc.M111183200CrossRefPubMedGoogle Scholar
- 13.Boeggeman E, Ramakrishnan B, Pasek M, Manzoni M, Puri A et al (2009) Site specific conjugation of fluoroprobes to the remodeled Fc N-glycans of monoclonal antibodies using mutant glycosyltransferases: application for cell surface antigen detection. Bioconjug Chem 20(6):1228–1236. https://doi.org/10.1021/bc900103pCrossRefPubMedPubMedCentralGoogle Scholar
- 14.Zhu Z, Ramakrishnan B, Li J, Wang Y, Feng Y et al (2014) Site-specific antibody-drug conjugation through an engineered glycotransferase and a chemically reactive sugar. MAbs 6(5):1190–1200. https://doi.org/10.4161/mabs.29889CrossRefPubMedPubMedCentralGoogle Scholar
- 15.Zeglis BM, Davis CB, Aggeler R, Kang HC et al (2013) An enzyme-mediated methodology for the site-specific radiolabeling of antibodies based on catalyst-free click chemistry. Bioconjug Chem 24(6):1057–1067. https://doi.org/10.1021/bc400122cCrossRefPubMedPubMedCentralGoogle Scholar
- 16.Agard NJ, Prescher JA, Bertozzi CR (2004) A strain promoted [3 +2] azide – alkyne cycloaddition for covalent modification of biomolecules in living systems. J Am Chem Soc 126:15046–15047. https://doi.org/10.1021/ja044996fCrossRefPubMedGoogle Scholar
- 17.Jewett JC, Bertozzi CR (2010) Cu-free click cycloaddition reactions in chemical biology. Chem Soc Rev 39(4):1272–1279CrossRefGoogle Scholar
- 18.Cook BE, Adumeau P, Membreno R, Carnazza KE, Brand C, Reiner T, Agnew BJ, Lewis JS, Zeglis BM (2016) Pretargeted PET imaging using a site-specifically labeled immunoconjugate. Bioconjug Chem 27(8):1789–1795. https://doi.org/10.1021/acs.bioconjchem.6b00235CrossRefPubMedPubMedCentralGoogle Scholar
- 19.Zeglis BM, Davis CB, Abdel-Atti D, Carlin SD et al (2014) Chemoenzymatic strategy for the synthesis of site-specifically labeled Immunoconjugates for multimodal PET and optical imaging. Bioconjug Chem 25(12):2123–2128. https://doi.org/10.1021/bc500499hCrossRefPubMedPubMedCentralGoogle Scholar
- 20.Adumeau P, Vivier D, Sharma SK, Wang W, Zhang T, Chen A, Agnew BJ, Zeglis BM (2018) Site-specifically labeled antibody–drug conjugate for simultaneous therapy and immunoPET. Mol Pharm 15(3):892–898. https://doi.org/10.1021/acs.molpharmaceut.7b00802CrossRefPubMedPubMedCentralGoogle Scholar
- 21.Collin M, Olsén A (2001) EndoS, a novel secreted protein from Streptococcus pyogenes with endoglycosidase activity on human IgG. EMBO J 20(12):3046–3055. https://doi.org/10.1093/emboj/20.12.3046CrossRefPubMedPubMedCentralGoogle Scholar
- 22.Sjögren J, Struwe WB, Cosgrave EF, Rudd PM, Stervander M, Allhorn M, Hollands A, Nizet V, Collin M (2013) EndoS2 is a unique and conserved enzyme of serotype M49 group A Streptococcus that hydrolyses N-linked glycans on IgG and α1-acid glycoprotein. Biochem J 455(1):107–118. https://doi.org/10.1042/BJ20130126CrossRefPubMedPubMedCentralGoogle Scholar
- 23.Sjögren J, Cosgrave EF, Allhorn M, Nordgren M, Björk S, Olsson F, Fredriksson S, Collin M (2015) EndoS and EndoS2 hydrolyze Fc-glycans on therapeutic antibodies with different glycoform selectivity and can be used for rapid quantification of high-mannose glycans. Glycobiology 25(10):1053–1063. https://doi.org/10.1093/glycob/cwv047CrossRefPubMedPubMedCentralGoogle Scholar
- 24.van Geel R, Wijdeven MA, Heesbeen R, Verkade JM, Wasiel AA, van Berkel SS, van Delft FL (2015) Chemoenzymatic conjugation of toxic payloads to the globally conserved N-glycan of native mAbs provides homogeneous and highly efficacious antibody–drug conjugates. Bioconjug Chem 26(11):2233–2242. https://doi.org/10.1021/acs.bioconjchem.5b00224CrossRefPubMedGoogle Scholar
- 25.Tang F, Yang Y, Tang Y, Tang S et al (2016) One-pot N-glycosylation remodeling of IgG with non-natural sialylglycopeptides enables glycosite-specific and dual-payload antibody–drug conjugates. Org Biomol Chem 14(40):9501–9518. https://doi.org/10.1039/c6ob01751gCrossRefPubMedGoogle Scholar
- 26.Gao P, Pinkston KL, Wilganowski N, Robinson H, Azhdarinia A, Zhu B, Sevick-Muraca EM, Harvey BR (2015) Deglycosylation of mAb by EndoS for improved molecular imaging. Mol Imaging Biol 17(2):195–203. https://doi.org/10.1007/s11307-014-0781-9CrossRefPubMedGoogle Scholar
- 27.Hald A, Nielsen C, MacCann D, Doran N, Morgan H, Buick R, Behrendt N, Engelholm L (2018) Generation of an ADC against sarcoma and glioblastoma. Paper presented at 8th Annual World ADC Europe, Berlin, 26–28 Mar 2018Google Scholar
Copyright information
© Springer Science+Business Media, LLC, part of Springer Nature 2020