Advertisement

Utilizing Solid-Phase to Enable High-Throughput, Site-Specific Conjugation and Dual-Labeled Antibody and Fab Conjugates

  • Sujiet PuthenveetilEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2078)

Abstract

For therapeutic and diagnostic applications, site-specific antibody conjugates have proven superior for both the ease of characterization as well as for optimal biophysical and therapeutic properties. Screening multiple antibodies on multiple sites with multiple linker-drugs can become very tedious and time-consuming. As solid-phase reactions are best suited to simplify multistep reactions, readily available protein A/L agarose beads can be utilized to generate site-specific, antibody –drug conjugates on engineered cysteines. Multiple site-specific labels on an antibody with either fluorophore or other-linker drugs is highly desired to evaluate antibody trafficking or payload-synergy for therapeutics. Utilizing solid-phase conjugation, a simple method to generate dual-labeled, site-specific antibody and Fab conjugates from antibody with engineered cysteine is also been described.

Key words

Solid-phase conjugation Site-specific conjugation On-bead conjugation Antibody–drug conjugate Fab conjugate Dual-label 

References

  1. 1.
    Jackson D, Stover D (2015) Using the lessons learned from the clinic to improve the preclinical development of antibody drug conjugates. Pharm Res 32(11):3458–3469.  https://doi.org/10.1007/s11095-014-1536-7CrossRefPubMedGoogle Scholar
  2. 2.
    Kim EG, Kim KM (2015) Strategies and advancement in antibody-drug conjugate optimization for targeted cancer therapeutics. Biomol Ther (Seoul) 23(6):493–509.  https://doi.org/10.4062/biomolther.2015.116CrossRefGoogle Scholar
  3. 3.
    Francisco JA, Cerveny CG, Meyer DL, Mixan BJ, Klussman K, Chace DF, Rejniak SX, Gordon KA, DeBlanc R, Toki BE, Law CL, Doronina SO, Siegall CB, Senter PD, Wahl AF (2003) cAC10-vcMMAE, an anti-CD30-monomethyl auristatin E conjugate with potent and selective antitumor activity. Blood 102(4):1458–1465.  https://doi.org/10.1182/blood-2003-01-0039CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Strop P, Delaria K, Foletti D, Witt JM, Hasa-Moreno A, Poulsen K, Casas MG, Dorywalska M, Farias S, Pios A, Lui V, Dushin R, Zhou D, Navaratnain T, Trani TT, Sutton J, Lindquist KC, Han B, Litt SH, Shelton DL, Pons J, Rajpal A (2015) Site-specific conjugation improves therapeutic index of antibody drug conjugates with high drug loading. Nat Biotechnol 33(7):694–696.  https://doi.org/10.1038/nbt.3274CrossRefPubMedGoogle Scholar
  5. 5.
    Panowksi S, Bhakta S, Raab H, Polakis P, Junutula Jagath R (2014) Site-specific antibody drug conjugates for cancer therapy. MAbs 6(1):34–45CrossRefGoogle Scholar
  6. 6.
    Tumey LN, Leverett CA, Vetelino B, Li F, Rago B, Han X, Loganzo F, Musto S, Bai G, Sukuru SCK, Graziani EI, Puthenveetil S, Casavant J, Ratnayake A, Marquette K, Hudson S, Doppalapudi VR, Stock J, Tchistiakova L, Bessire AJ, Clark T, Lucas J, Hosselet C, O’Donnell CJ, Subramanyam C (2016) Optimization of Tubulysin antibody–drug conjugates: a case study in addressing ADC metabolism. ACS Med Chem Lett 7(11):977–982CrossRefGoogle Scholar
  7. 7.
    Strop P, Liu S-H, Dorywalska M, Delaria K, Dushin RG, Tran T-T, Ho W-H, Farias S, Casas MG, Abdiche Y, Zhou D, Chandrasekaran R, Samain C, Loo C, Rossi A, Rickert M, Krimm S, Wong T, Chin SM, Yu J, Dilley J, Chaparro-Riggers J, Filzen GF, O'Donnell CJ, Wang F, Myers JS, Pons J, Shelton DL, Rajpal A (2013) Location matters: site of conjugation modulates stability and pharmacokinetics of antibody drug conjugates. Chem Biol 20(2):161–167.  https://doi.org/10.1016/j.chembiol.2013.01.010CrossRefGoogle Scholar
  8. 8.
    van Berkel SS, van Delft FL (2018) Enzymatic strategies for (near) clinical development of antibody-drug conjugates. Drug Discov Today Technol 30:3–10.  https://doi.org/10.1016/j.ddtec.2018.09.005CrossRefPubMedGoogle Scholar
  9. 9.
    Nath N, Godat B, Benink H, Urh M (2015) On-bead antibody-small molecule conjugation using high-capacity magnetic beads. J Immunol Methods 426:95–103.  https://doi.org/10.1016/j.jim.2015.08.008CrossRefPubMedGoogle Scholar
  10. 10.
    Lyon RP, Meyer DL, Setter JR, Senter PD (2012) Conjugation of anticancer drugs through endogenous monoclonal antibody cysteine residues. Methods Enzymol 502(Protein Engineering for Therapeutics, Part A):123–138.  https://doi.org/10.1016/b978-0-12-416039-2.00006-9CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Puthenveetil S, Musto S, Loganzo F, Tumey LN, O'Donnell CJ, Graziani E (2016) Development of solid-phase site-specific conjugation and its application toward generation of dual labeled antibody and fab drug conjugates. Bioconjug Chem 27(4):1030–1039.  https://doi.org/10.1021/acs.bioconjchem.6b00054CrossRefPubMedGoogle Scholar
  12. 12.
    Hallam T (2013) Producing homogeneous ADCs with combination warheads. In: World ADC Summit, San Francisco, California, USA, 14–17 Oct 2013Google Scholar
  13. 13.
    Li X, Patterson JT, Sarkar M, Pedzisa L, Kodadek T, Roush WR, Rader C (2015) Site-specific dual antibody conjugation via engineered cysteine and selenocysteine residues. Bioconjug Chem 26:2243–2248.  https://doi.org/10.1021/acs.bioconjchem.5b00244CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Maruani A, Smith ME, Miranda E, Chester KA, Chudasama V, Caddick S (2015) A plug-and-play approach to antibody-based therapeutics via a chemoselective dual click strategy. Nat Commun 6:6645.  https://doi.org/10.1038/ncomms7645CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Pickens CJ, Johnson SN, Pressnall MM, Leon MA, Berkland CJ (2018) Practical considerations, challenges, and limitations of bioconjugation via azide-alkyne cycloaddition. Bioconjug Chem 29(3):686–701.  https://doi.org/10.1021/acs.bioconjchem.7b00633CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Strop P, Dorywalska MG, Rajpal A, Shelton D, Liu S-H, Pons J, Dushin R (2012) Engineered polypeptide conjugates and methods for making thereof using transglutaminase. Application: WO. WO Patent 2011-IB54899, 2012059882Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.AbbVie Bioresearch Center, R&DWorcesterUSA
  2. 2.Pfizer, Inc.GrotonUSA

Personalised recommendations