Advertisement

Click Chemistry Conjugations

  • Tak Ian Chio
  • Susan L. BaneEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2078)

Abstract

Click chemistry has found wide application in bioconjugation, enabling control over the site of modification in biomolecules. Demonstrations of this chemistry to construct chemically defined antibody–drug conjugates (ADCs) have increased in recent years, following studies that support benefits of homogeneity and site-specificity of drug placement on the antibody. In this chapter, a brief history of early applications of this chemistry in ADCs is presented. Examples of click chemistries that are utilized for ADC synthesis, including those currently undergoing clinical investigations, are enumerated. Protocols for two common conjugation methods based on carbonyl-aminooxy coupling and strain-promoted azide–alkyne cycloaddition are described.

Key words

Click chemistry Site-specific Antibody–drug conjugates (ADCs) Aldehyde Oxime Strain-promoted azide–alkyne cycloaddition (SPAAC) Bioconjugation 

References

  1. 1.
    Beck A, Goetsch L, Dumontet C, Corvaia N (2017) Strategies and challenges for the next generation of antibody-drug conjugates. Nat Rev Drug Discov 16(5):315–337.  https://doi.org/10.1038/nrd.2016.268CrossRefGoogle Scholar
  2. 2.
    Bross PF, Beitz J, Chen G, Chen XH, Duffy E, Kieffer L, Roy S, Sridhara R, Rahman A, Williams G, Pazdur R (2001) Approval summary. Gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin Cancer Res 7(6):1490–1496PubMedGoogle Scholar
  3. 3.
    Junutula JR, Raab H, Clark S, Bhakta S, Leipold DD, Weir S, Chen Y, Simpson M, Tsai SP, Dennis MS, Lu Y, Meng YG, Ng C, Yang J, Lee CC, Duenas E, Gorrell J, Katta V, Kim A, McDorman K, Flagella K, Venook R, Ross S, Spencer SD, Lee Wong W, Lowman HB, Vandlen R, Sliwkowski MX, Scheller RH, Polakis P, Mallet W (2008) Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat Biotechnol 26:925.  https://doi.org/10.1038/nbt.1480CrossRefGoogle Scholar
  4. 4.
    Shen BQ, Xu K, Liu L, Raab H, Bhakta S, Kenrick M, Parsons-Reponte KL, Tien J, Yu SF, Mai E, Li D, Tibbitts J, Baudys J, Saad OM, Scales SJ, McDonald PJ, Hass PE, Eigenbrot C, Nguyen T, Solis WA, Fuji RN, Flagella KM, Patel D, Spencer SD, Khawli LA, Ebens A, Wong WL, Vandlen R, Kaur S, Sliwkowski MX, Scheller RH, Polakis P, Junutula JR (2012) Conjugation site modulates the in vivo stability and therapeutic activity of antibody-drug conjugates. Nat Biotechnol 30(2):184–189.  https://doi.org/10.1038/nbt.2108CrossRefGoogle Scholar
  5. 5.
    Strop P, Liu SH, Dorywalska M, Delaria K, Dushin RG, Tran TT, Ho WH, Farias S, Casas MG, Abdiche Y, Zhou D, Chandrasekaran R, Samain C, Loo C, Rossi A, Rickert M, Krimm S, Wong T, Chin SM, Yu J, Dilley J, Chaparro-Riggers J, Filzen GF, O'Donnell CJ, Wang F, Myers JS, Pons J, Shelton DL, Rajpal A (2013) Location matters: site of conjugation modulates stability and pharmacokinetics of antibody drug conjugates. Chem Biol 20(2):161–167.  https://doi.org/10.1016/j.chembiol.2013.01.010CrossRefGoogle Scholar
  6. 6.
    Tumey LN, Charati M, He T, Sousa E, Ma D, Han X, Clark T, Casavant J, Loganzo F, Barletta F, Lucas J, Graziani EI (2014) Mild method for succinimide hydrolysis on ADCs: impact on ADC potency, stability, exposure, and efficacy. Bioconjug Chem 25(10):1871–1880.  https://doi.org/10.1021/bc500357nCrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Tumey LN, Li F, Rago B, Han X, Loganzo F, Musto S, Graziani EI, Puthenveetil S, Casavant J, Marquette K, Clark T, Bikker J, Bennett EM, Barletta F, Piche-Nicholas N, Tam A, O'Donnell CJ, Gerber HP, Tchistiakova L (2017) Site selection: a case study in the identification of optimal cysteine engineered antibody drug conjugates. AAPS J 19(4):1123–1135.  https://doi.org/10.1208/s12248-017-0083-7CrossRefPubMedGoogle Scholar
  8. 8.
    Vollmar BS, Wei B, Ohri R, Zhou J, He J, Yu SF, Leipold D, Cosino E, Yee S, Fourie-O'Donohue A, Li G, Phillips GL, Kozak KR, Kamath A, Xu K, Lee G, Lazar GA, Erickson HK (2017) Attachment site cysteine Thiol pKa is a key driver for site-dependent stability of THIOMAB antibody-drug conjugates. Bioconjug Chem 28(10):2538–2548.  https://doi.org/10.1021/acs.bioconjchem.7b00365CrossRefPubMedGoogle Scholar
  9. 9.
    Agarwal P, Bertozzi CR (2015) Site-specific antibody-drug conjugates: the nexus of bioorthogonal chemistry, protein engineering, and drug development. Bioconjug Chem 26(2):176–192.  https://doi.org/10.1021/bc5004982CrossRefGoogle Scholar
  10. 10.
    Hamann PR, Hinman LM, Hollander I, Beyer CF, Lindh D, Holcomb R, Hallett W, Tsou H-R, Upeslacis J, Shochat D, Mountain A, Flowers DA, Bernstein I (2002) Gemtuzumab ozogamicin, a potent and selective anti-CD33 antibody−calicheamicin conjugate for treatment of acute myeloid leukemia. Bioconjug Chem 13(1):47–58.  https://doi.org/10.1021/bc010021yCrossRefPubMedGoogle Scholar
  11. 11.
    Laguzza BC, Nichols CL, Briggs SL, Cullinan GJ, Johnson DA, Starling JJ, Baker AL, Bumol TF, Corvalan JRF (1989) New antitumor monoclonal antibody-vinca conjugates LY203725 and related compounds: design, preparation, and representative in vivo activity. J Med Chem 32(3):548–555.  https://doi.org/10.1021/jm00123a007CrossRefPubMedGoogle Scholar
  12. 12.
    Hinman LM, Hamann PR, Wallace R, Menendez AT, Durr FE, Upeslacis J (1993) Preparation and characterization of monoclonal antibody conjugates of the calicheamicins: a novel and potent family of antitumor antibiotics. Cancer Res 53(14):3336–3342PubMedGoogle Scholar
  13. 13.
    Zuberbühler K, Casi G, Bernardes GJL, Neri D (2012) Fucose-specific conjugation of hydrazide derivatives to a vascular-targeting monoclonal antibody in IgG format. Chem Commun 48(56):7100–7102.  https://doi.org/10.1039/c2cc32412aCrossRefGoogle Scholar
  14. 14.
    Senter PD (2009) Potent antibody drug conjugates for cancer therapy. Curr Opin Chem Biol 13(3):235–244.  https://doi.org/10.1016/j.cbpa.2009.03.023CrossRefPubMedGoogle Scholar
  15. 15.
    Kalia J, Raines RT (2008) Hydrolytic stability of hydrazones and oximes. Angew Chem Int Ed 47(39):7523–7526.  https://doi.org/10.1002/anie.200802651CrossRefGoogle Scholar
  16. 16.
    NIH: U.S. National Library of Medicine (2017) A dose-escalation study of ARX788, IV administered in subjects with advanced cancers with HER2 expression (Identifier: NCT03255070). https://clinicaltrials.gov/ct2/show/NCT03255070. Accessed 1 Feb 2019
  17. 17.
    LegoChem Biosciences, Inc. (2016) Pipeline. http://www.legochembio.com/m/eng/md/pipeline.asp. Accessed 1 Feb 2019
  18. 18.
    Dirksen A, Dawson PE (2008) Rapid oxime and hydrazone ligations with aromatic aldehydes for biomolecular labeling. Bioconjug Chem 19(12):2543–2548.  https://doi.org/10.1021/bc800310pCrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kölmel DK, Kool ET (2017) Oximes and hydrazones in bioconjugation: mechanism and catalysis. Chem Rev 117(15):10358–10376.  https://doi.org/10.1021/acs.chemrev.7b00090CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Agarwal P, Kudirka R, Albers AE, Barfield RM, de Hart GW, Drake PM, Jones LC, Rabuka D (2013) Hydrazino-Pictet-Spengler ligation as a biocompatible method for the generation of stable protein conjugates. Bioconjug Chem 24(6):846–851.  https://doi.org/10.1021/bc400042aCrossRefPubMedGoogle Scholar
  21. 21.
    Drake PM, Albers AE, Baker J, Banas S, Barfield RM, Bhat AS, de Hart GW, Garofalo AW, Holder P, Jones LC, Kudirka R, McFarland J, Zmolek W, Rabuka D (2014) Aldehyde tag coupled with HIPS chemistry enables the production of ADCs conjugated site-specifically to different antibody regions with distinct in vivo efficacy and PK outcomes. Bioconjug Chem 25(7):1331–1341.  https://doi.org/10.1021/bc500189zCrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    NIH: U.S. National Library of Medicine (2018) Study of TRPH-222 in patients with relapsed and/or refractory B-cell lymphoma (Identifier: NCT03682796). https://clinicaltrials.gov/ct2/show/NCT03682796. Accessed 1 Feb 2019
  23. 23.
    Kudirka R, Barfield Robyn M, McFarland J, Albers Aaron E, de Hart Gregory W, Drake Penelope M, Holder Patrick G, Banas S, Jones Lesley C, Garofalo Albert W, Rabuka D (2015) Generating site-specifically modified proteins via a versatile and stable nucleophilic carbon ligation. Chem Biol 22(2):293–298.  https://doi.org/10.1016/j.chembiol.2014.11.019CrossRefPubMedGoogle Scholar
  24. 24.
    Dilek O, Lei Z, Mukherjee K, Bane S (2015) Rapid formation of a stable boron-nitrogen heterocycle in dilute, neutral aqueous solution for bioorthogonal coupling reactions. Chem Commun 51(95):16992–16995.  https://doi.org/10.1039/c5cc07453cCrossRefGoogle Scholar
  25. 25.
    Schmidt P, Stress C, Gillingham D (2015) Boronic acids facilitate rapid oxime condensations at neutral pH. Chem Sci 6(6):3329–3333.  https://doi.org/10.1039/c5sc00921aCrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Stress CJ, Schmidt PJ, Gillingham DG (2016) Comparison of boron-assisted oxime and hydrazone formations leads to the discovery of a fluorogenic variant. Org Biomol Chem 14(24):5529–5533.  https://doi.org/10.1039/c6ob00168hCrossRefPubMedGoogle Scholar
  27. 27.
    Gillingham D (2016) The role of boronic acids in accelerating condensation reactions of alpha-effect amines with carbonyls. Org Biomol Chem 14(32):7606–7609.  https://doi.org/10.1039/c6ob01193dCrossRefPubMedGoogle Scholar
  28. 28.
    Gu H, Chio TI, Lei Z, Staples RJ, Hirschi JS, Bane S (2017) Formation of hydrazones and stabilized boron-nitrogen heterocycles in aqueous solution from carbohydrazides and ortho-formylphenylboronic acids. Org Biomol Chem 15(36):7543–7548.  https://doi.org/10.1039/c7ob01708aCrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Chio TI, Gu H, Mukherjee K, Tumey LN, Bane S (2019) Site-specific bioconjugation and multi-bioorthogonal labeling via rapid formation of a boron-nitrogen heterocycle. Bioconjug Chem 30(5):1554–1564.  https://doi.org/10.1021/acs.bioconjchem.9b00246CrossRefPubMedGoogle Scholar
  30. 30.
    Pickens CJ, Johnson SN, Pressnall MM, Leon MA, Berkland CJ (2018) Practical considerations, challenges, and limitations of bioconjugation via Azide–alkyne cycloaddition. Bioconjug Chem 29(3):686–701.  https://doi.org/10.1021/acs.bioconjchem.7b00633CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Li X, Fang T, Boons G-J (2014) Preparation of well-defined antibody–drug conjugates through glycan remodeling and strain-promoted azide–alkyne cycloadditions. Angew Chem 126(28):7307–7310.  https://doi.org/10.1002/ange.201402606CrossRefGoogle Scholar
  32. 32.
    Zimmerman ES, Heibeck TH, Gill A, Li X, Murray CJ, Madlansacay MR, Tran C, Uter NT, Yin G, Rivers PJ, Yam AY, Wang WD, Steiner AR, Bajad SU, Penta K, Yang W, Hallam TJ, Thanos CD, Sato AK (2014) Production of site-specific antibody–drug conjugates using optimized non-natural amino acids in a cell-free expression system. Bioconjug Chem 25(2):351–361.  https://doi.org/10.1021/bc400490zCrossRefPubMedGoogle Scholar
  33. 33.
    Dennler P, Chiotellis A, Fischer E, Bregeon D, Belmant C, Gauthier L, Lhospice F, Romagne F, Schibli R (2014) Transglutaminase-based chemo-enzymatic conjugation approach yields homogeneous antibody-drug conjugates. Bioconjug Chem 25(3):569–578.  https://doi.org/10.1021/bc400574zCrossRefPubMedGoogle Scholar
  34. 34.
    van Geel R, Wijdeven MA, Heesbeen R, Verkade JMM, Wasiel AA, van Berkel SS, van Delft FL (2015) Chemoenzymatic conjugation of toxic payloads to the globally conserved N-glycan of native mAbs provides homogeneous and highly efficacious antibody–drug conjugates. Bioconjug Chem 26(11):2233–2242.  https://doi.org/10.1021/acs.bioconjchem.5b00224CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    VanBrunt MP, Shanebeck K, Caldwell Z, Johnson J, Thompson P, Martin T, Dong H, Li G, Xu H, D’Hooge F, Masterson L, Bariola P, Tiberghien A, Ezeadi E, Williams DG, Hartley JA, Howard PW, Grabstein KH, Bowen MA, Marelli M (2015) Genetically encoded azide containing amino acid in mammalian cells enables site-specific antibody–drug conjugates using click cycloaddition chemistry. Bioconjug Chem 26(11):2249–2260.  https://doi.org/10.1021/acs.bioconjchem.5b00359CrossRefPubMedGoogle Scholar
  36. 36.
    Tang F, Yang Y, Tang Y, Tang S, Yang L, Sun B, Jiang B, Dong J, Liu H, Huang M, Geng M-Y, Huang W (2016) One-pot N-glycosylation remodeling of IgG with non-natural sialylglycopeptides enables glycosite-specific and dual-payload antibody–drug conjugates. Org Biomol Chem 14(40):9501–9518.  https://doi.org/10.1039/c6ob01751gCrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Thompson P, Ezeadi E, Hutchinson I, Fleming R, Bezabeh B, Lin J, Mao S, Chen C, Masterson L, Zhong H, Toader D, Howard P, Wu H, Gao C, Dimasi N (2016) Straightforward glycoengineering approach to site-specific antibody–pyrrolobenzodiazepine conjugates. ACS Med Chem Lett 7(11):1005–1008.  https://doi.org/10.1021/acsmedchemlett.6b00278CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    NIH: U.S. National Library of Medicine (2018) Study of STRO-001, an anti-CD74 antibody drug conjugate, in patients with advanced B-cell malignancies (Identifier: NCT03424603). https://clinicaltrials.gov/ct2/show/NCT03424603. Accessed 1 Feb 2019
  39. 39.
    NIH: U.S. National Library of Medicine (2018) Safety, tolerability, pharmacokinetics, and antitumor study of ADCT-601 to treat advanced solid tumors (Identifier: NCT03700294). https://clinicaltrials.gov/ct2/show/NCT03700294. Accessed 1 Feb 2019
  40. 40.
    Oliveira BL, Guo Z, Bernardes GJL (2017) Inverse electron demand Diels–Alder reactions in chemical biology. Chem Soc Rev 46(16):4895–4950.  https://doi.org/10.1039/c7cs00184cCrossRefPubMedGoogle Scholar
  41. 41.
    Oller-Salvia B, Kym G, Chin JW (2018) Rapid and efficient generation of stable antibody-drug conjugates via an encoded cyclopropene and an inverse-electron-demand Diels-Alder reaction. Angew Chem Int Ed 57(11):2831–2834.  https://doi.org/10.1002/anie.201712370CrossRefGoogle Scholar
  42. 42.
    Axup JY, Bajjuri KM, Ritland M, Hutchins BM, Kim CH, Kazane SA, Halder R, Forsyth JS, Santidrian AF, Stafin K, Lu Y, Tran H, Seller AJ, Biroc SL, Szydlik A, Pinkstaff JK, Tian F, Sinha SC, Felding-Habermann B, Smider VV, Schultz PG (2012) Synthesis of site-specific antibody-drug conjugates using unnatural amino acids. Proc Natl Acad Sci U S A 109(40):16101–16106.  https://doi.org/10.1073/pnas.1211023109CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Tian F, Lu Y, Manibusan A, Sellers A, Tran H, Sun Y, Phuong T, Barnett R, Hehli B, Song F, DeGuzman MJ, Ensari S, Pinkstaff JK, Sullivan LM, Biroc SL, Cho H, Schultz PG, DiJoseph J, Dougher M, Ma D, Dushin R, Leal M, Tchistiakova L, Feyfant E, Gerber HP, Sapra P (2014) A general approach to site-specific antibody drug conjugates. Proc Natl Acad Sci U S A 111(5):1766–1771.  https://doi.org/10.1073/pnas.1321237111CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Zhou Q, Stefano JE, Manning C, Kyazike J, Chen B, Gianolio DA, Park A, Busch M, Bird J, Zheng X, Simonds-Mannes H, Kim J, Gregory RC, Miller RJ, Brondyk WH, Dhal PK, Pan CQ (2014) Site-specific antibody–drug conjugation through glycoengineering. Bioconjug Chem 25(3):510–520.  https://doi.org/10.1021/bc400505qCrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Ramakrishnan B, Li J, Wang Y, Feng Y, Prabakaran P, Colantonio S, Dyba MA, Qasba PK, Dimitrov DS (2014) Site-specific antibody-drug conjugation through an engineered glycotransferase and a chemically reactive sugar AU - Zhu, Zhongyu. MAbs 6(5):1190–1200.  https://doi.org/10.4161/mabs.29889CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Thompson P, Bezabeh B, Fleming R, Pruitt M, Mao S, Strout P, Chen C, Cho S, Zhong H, Wu H, Gao C, Dimasi N (2015) Hydrolytically stable site-specific conjugation at the N-terminus of an engineered antibody. Bioconjug Chem 26(10):2085–2096.  https://doi.org/10.1021/acs.bioconjchem.5b00355CrossRefPubMedGoogle Scholar
  47. 47.
    J-j L, Choi H-J, Yun M, Kang Y, Jung J-E, Ryu Y, Kim TY, Y-j C, Cho H-S, Min J-J, Chung C-W, Kim H-S (2015) Enzymatic prenylation and oxime ligation for the synthesis of stable and homogeneous protein–drug conjugates for targeted therapy. Angew Chem Int Ed 54(41):12020–12024.  https://doi.org/10.1002/anie.201505964CrossRefGoogle Scholar
  48. 48.
    Kudirka RA, Barfield RM, McFarland JM, Drake PM, Carlson A, Banas S, Zmolek W, Garofalo AW, Rabuka D (2016) Site-specific tandem Knoevenagel condensation-Michael addition to generate antibody-drug conjugates. ACS Med Chem Lett 7(11):994–998.  https://doi.org/10.1021/acsmedchemlett.6b00253CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Xu Y, Jin S, Zhao W, Liu W, Ding D, Zhou J, Chen S (2017) A versatile chemo-enzymatic conjugation approach yields homogeneous and highly potent antibody-drug conjugates. Int J Mol Sci 18(11):2284CrossRefGoogle Scholar
  50. 50.
    Kim Y, Park T, Woo S, Lee H, Kim S, Cho J, Jung D, Kim Y, Kwon H, Oh K, Chung Y, Park Y (2017) Antibody-active agent conjugates and methods of use. US Patent, 9,669,107, 6 Jun 2017Google Scholar
  51. 51.
    Saito F, Noda H, Bode JW (2015) Critical evaluation and rate constants of chemoselective ligation reactions for stoichiometric conjugations in water. ACS Chem Biol 10(4):1026–1033.  https://doi.org/10.1021/cb5006728CrossRefPubMedGoogle Scholar
  52. 52.
    Dirksen A, Hackeng TM, Dawson PE (2006) Nucleophilic catalysis of oxime ligation. Angew Chem Int Ed 45(45):7581–7584.  https://doi.org/10.1002/anie.200602877CrossRefGoogle Scholar
  53. 53.
    Kumar A, Kinneer K, Masterson L, Ezeadi E, Howard P, Wu H, Gao C, Dimasi N (2018) Synthesis of a heterotrifunctional linker for the site-specific preparation of antibody-drug conjugates with two distinct warheads. Bioorg Med Chem Lett 28(23):3617–3621.  https://doi.org/10.1016/j.bmcl.2018.10.043CrossRefPubMedGoogle Scholar
  54. 54.
    Kumar A, Kinneer K, Masterson L, Ezeadi E, Howard P, Wu H, Gao C, Dimasi N (2018) Characterization and in vitro data of antibody drug conjugates (ADCs) derived from heterotrifunctional linker designed for the site-specific preparation of dual ADCs. Data Brief 21:2208–2220.  https://doi.org/10.1016/j.dib.2018.11.005CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Blanden AR, Mukherjee K, Dilek O, Loew M, Bane SL (2011) 4-Aminophenylalanine as a biocompatible nucleophilic catalyst for hydrazone ligations at low temperature and neutral pH. Bioconjug Chem 22(10):1954–1961.  https://doi.org/10.1021/bc2001566CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Davis DL, Price EK, Aderibigbe SO, Larkin MXH, Barlow ED, Chen R, Ford LC, Gray ZT, Gren SH, Jin Y, Keddington KS, Kent AD, Kim D, Lewis A, Marrouche RS, O’Dair MK, Powell DR, Scadden MHC, Session CB, Tao J, Trieu J, Whiteford KN, Yuan Z, Yun G, Zhu J, Heemstra JM (2016) Effect of buffer conditions and organic cosolvents on the rate of strain-promoted azide–alkyne cycloaddition. J Org Chem 81(15):6816–6819.  https://doi.org/10.1021/acs.joc.6b01112CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of ChemistryBinghamton University, State University of New YorkBinghamtonUSA

Personalised recommendations