Advertisement

Pushing the Envelope: Advancement of ADCs Outside of Oncology

  • Michael J. McPhersonEmail author
  • Adrian D. Hobson
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2078)

Abstract

The majority of ADCs in preclinical and clinical development are for oncology indications where cytotoxic payloads are targeted to antigen-expressing cancer cells. However, the modulation of pathogenic cellular activity via ADC-mediated delivery of bioactive small molecules is also an attractive concept for non-oncology indications leading to an expanded application of the technology. Here we summarize those ADCs that have been described so far for non-oncology applications and which cover a variety of payload mechanisms beyond cell killing, from early in vitro proof-of-concept experiments to clinical trials. As our understanding of ADC technology continues to grow, it is anticipated that the development of ADCs as therapeutics for disease areas outside of oncology will also increase.

Key words

Non-oncology ADC Anti-inflammatory Glucocorticoid Antibiotic Payload Antibody drug conjugate Inflammatory disease 

References

  1. 1.
    Yu S, Lim A, Tremblay MS (2018) Next horizons: ADCs beyond oncology. In: Damelin M (ed) Innovations for next-generation antibody-drug conjugates. Springer International Publishing, Cham, pp 321–347.  https://doi.org/10.1007/978-3-319-78154-9_14CrossRefGoogle Scholar
  2. 2.
    Schacke H, Docke WD, Asadullah K (2002) Mechanisms involved in the side effects of glucocorticoids. Pharmacol Ther 96(1):23–43CrossRefGoogle Scholar
  3. 3.
    Rosen J, Miner JN (2005) The search for safer glucocorticoid receptor ligands. Endocr Rev 26(3):452–464.  https://doi.org/10.1210/er.2005-0002CrossRefPubMedGoogle Scholar
  4. 4.
    Everts M, Kok RJ, Ásgeirsdóttir SA, Melgert BN, Moolenaar TJM, Koning GA, van Luyn MJA, Meijer DKF, Molema G (2002) Selective intracellular delivery of dexamethasone into activated endothelial cells using an E-Selectin-directed immunoconjugate. J Immunol 168(2):883.  https://doi.org/10.4049/jimmunol.168.2.883CrossRefPubMedGoogle Scholar
  5. 5.
    De Rycke L, Baeten D, Foell D, Kruithof E, Veys EM, Roth J, De Keyser F (2005) Differential expression and response to anti-TNFalpha treatment of infiltrating versus resident tissue macrophage subsets in autoimmune arthritis. J Pathol 206(1):17–27.  https://doi.org/10.1002/path.1758CrossRefPubMedGoogle Scholar
  6. 6.
    Komohara Y, Hirahara J, Horikawa T, Kawamura K, Kiyota E, Sakashita N, Araki N, Takeya M (2006) AM-3K, an anti-macrophage antibody, recognizes CD163, a molecule associated with an anti-inflammatory macrophage phenotype. J Histochem Cytochem 54(7):763–771.  https://doi.org/10.1369/jhc.5A6871.2006CrossRefPubMedGoogle Scholar
  7. 7.
    Li W, Xu LH, Yuan XM (2004) Macrophage hemoglobin scavenger receptor and ferritin accumulation in human atherosclerotic lesions. Ann N Y Acad Sci 1030:196–201.  https://doi.org/10.1196/annals.1329.025CrossRefPubMedGoogle Scholar
  8. 8.
    Graversen JH, Svendsen P, Dagnaes-Hansen F, Dal J, Anton G, Etzerodt A, Petersen MD, Christensen PA, Moller HJ, Moestrup SK (2012) Targeting the hemoglobin scavenger receptor CD163 in macrophages highly increases the anti-inflammatory potency of dexamethasone. Mol Ther 20(8):1550–1558.  https://doi.org/10.1038/mt.2012.103CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Tumey LN, Rago B, Han X (2015) In vivo biotransformations of antibody–drug conjugates. Bioanalysis 7(13):1649–1664.  https://doi.org/10.4155/bio.15.84CrossRefGoogle Scholar
  10. 10.
    Kern JC, Dooney D, Zhang R, Liang L, Brandish PE, Cheng M, Feng G, Beck A, Bresson D, Firdos J, Gately D, Knudsen N, Manibusan A, Sun Y, Garbaccio RM (2016) Novel phosphate modified cathepsin B linkers: improving aqueous solubility and enhancing payload scope of ADCs. Bioconjug Chem 27(9):2081–2088.  https://doi.org/10.1021/acs.bioconjchem.6b00337CrossRefPubMedGoogle Scholar
  11. 11.
    Brandish PE, Palmieri A, Antonenko S, Beaumont M, Benso L, Cancilla M, Cheng M, Fayadat-Dilman L, Feng G, Figueroa I, Firdos J, Garbaccio R, Garvin-Queen L, Gately D, Geda P, Haines C, Hseih S, Hodges D, Kern J, Knudsen N, Kwasnjuk K, Liang L, Ma H, Manibusan A, Miller PL, Moy LY, Qu Y, Shah S, Shin JS, Stivers P, Sun Y, Tomazela D, Woo HC, Zaller D, Zhang S, Zhang Y, Zielstorff M (2018) Development of anti-CD74 antibody-drug conjugates to target glucocorticoids to immune cells. Bioconjug Chem 29(7):2357–2369.  https://doi.org/10.1021/acs.bioconjchem.8b00312CrossRefPubMedGoogle Scholar
  12. 12.
    Han A, Olson W, Murphy AJ (2018) Preparation of novel steroids and their protein-conjugates for the target-specific delivery of glucocorticoids. WO2018089373A2Google Scholar
  13. 13.
    Touraine P, Martini JF, Zafrani B, Durand JC, Labaille F, Malet C, Nicolas A, Trivin C, Postel-Vinay MC, Kuttenn F, Kelly PA (1998) Increased expression of prolactin receptor gene assessed by quantitative polymerase chain reaction in human breast tumors versus normal breast tissues. J Clin Endocrinol Metab 83(2):667–674.  https://doi.org/10.1210/jcem.83.2.4564CrossRefPubMedGoogle Scholar
  14. 14.
    Aggarwal BB, Gupta SC, Kim JH (2012) Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey. Blood 119(3):651–665.  https://doi.org/10.1182/blood-2011-04-325225CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Bradley JR (2008) TNF-mediated inflammatory disease. J Pathol 214(2):149–160.  https://doi.org/10.1002/path.2287CrossRefPubMedGoogle Scholar
  16. 16.
    Lin J, Ziring D, Desai S, Kim S, Wong M, Korin Y, Braun J, Reed E, Gjertson D, Singh RR (2008) TNFalpha blockade in human diseases: an overview of efficacy and safety. Clin Immunol 126(1):13–30.  https://doi.org/10.1016/j.clim.2007.08.012CrossRefPubMedGoogle Scholar
  17. 17.
    Breedveld FC, Weisman MH, Kavanaugh AF, Cohen SB, Pavelka K, van Vollenhoven R, Sharp J, Perez JL, Spencer-Green GT (2006) The PREMIER study: a multicenter, randomized, double-blind clinical trial of combination therapy with adalimumab plus methotrexate versus methotrexate alone or adalimumab alone in patients with early, aggressive rheumatoid arthritis who had not had previous methotrexate treatment. Arthritis Rheum 54(1):26–37.  https://doi.org/10.1002/art.21519CrossRefPubMedGoogle Scholar
  18. 18.
    Deora A, Hegde S, Lee J, Choi CH, Chang Q, Lee C, Eaton L, Tang H, Wang D, Lee D, Michalak M, Tomlinson M, Tao Q, Gaur N, Harvey B, McLoughlin S, Labkovsky B, Ghayur T (2017) Transmembrane TNF-dependent uptake of anti-TNF antibodies. MAbs 9(4):680–695.  https://doi.org/10.1080/19420862.2017.1304869CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Waegell W BS, Mathieu S, Phillips L, Goess C, Hobson A, McPherson M, Stoffel R (2018) Development of a novel therapeutic antibody drug conjugate for the treatment of autoimmune disease. In: The resolution of inflammation in health and disease, Dublin, Ireland, Mar 24–28Google Scholar
  20. 20.
    McPherson MJ, Hobson AD, Hayes ME, Marvin CC, Schmidt D, Waegell W, Goess C, Oh JZ, Hernandez A, Jr., Randolph JT (2017) Preparation of glucocorticoid receptor agonist and immunoconjugates thereof. WO2017210471A1Google Scholar
  21. 21.
    Lehar SM, Pillow T, Xu M, Staben L, Kajihara KK, Vandlen R, DePalatis L, Raab H, Hazenbos WL, Morisaki JH, Kim J, Park S, Darwish M, Lee BC, Hernandez H, Loyet KM, Lupardus P, Fong R, Yan D, Chalouni C, Luis E, Khalfin Y, Plise E, Cheong J, Lyssikatos JP, Strandh M, Koefoed K, Andersen PS, Flygare JA, Wah Tan M, Brown EJ, Mariathasan S (2015) Novel antibody-antibiotic conjugate eliminates intracellular S. aureus. Nature 527(7578):323–328.  https://doi.org/10.1038/nature16057CrossRefGoogle Scholar
  22. 22.
    Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, Scheld M, Spellberg B, Bartlett J (2009) Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis 48(1):1–12.  https://doi.org/10.1086/595011CrossRefPubMedGoogle Scholar
  23. 23.
    Nannini E, Murray BE, Arias CA (2010) Resistance or decreased susceptibility to glycopeptides, daptomycin, and linezolid in methicillin-resistant Staphylococcus aureus. Curr Opin Pharmacol 10(5):516–521.  https://doi.org/10.1016/j.coph.2010.06.006CrossRefPubMedGoogle Scholar
  24. 24.
    Caldemeyer L, Dugan M, Edwards J, Akard L (2016) Long-term side effects of tyrosine kinase inhibitors in chronic myeloid Leukemia. Curr Hematol Malig Rep 11(2):71–79.  https://doi.org/10.1007/s11899-016-0309-2CrossRefPubMedGoogle Scholar
  25. 25.
    Blake S, Hughes TP, Mayrhofer G, Lyons AB (2008) The Src/ABL kinase inhibitor dasatinib (BMS-354825) inhibits function of normal human T-lymphocytes in vitro. Clin Immunol 127(3):330–339.  https://doi.org/10.1016/j.clim.2008.02.006CrossRefPubMedGoogle Scholar
  26. 26.
    Schade AE, Schieven GL, Townsend R, Jankowska AM, Susulic V, Zhang R, Szpurka H, Maciejewski JP (2008) Dasatinib, a small-molecule protein tyrosine kinase inhibitor, inhibits T-cell activation and proliferation. Blood 111(3):1366–1377.  https://doi.org/10.1182/blood-2007-04-084814CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Wang RE, Liu T, Wang Y, Cao Y, Du J, Luo X, Deshmukh V, Kim CH, Lawson BR, Tremblay MS, Young TS, Kazane SA, Wang F, Schultz PG (2015) An immunosuppressive antibody-drug conjugate. J Am Chem Soc 137(9):3229–3232.  https://doi.org/10.1021/jacs.5b00620CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Liu T, Liu Y, Wang Y, Hull M, Schultz PG, Wang F (2014) Rational design of CXCR4 specific antibodies with elongated CDRs. J Am Chem Soc 136(30):10557–10560.  https://doi.org/10.1021/ja5042447CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Joseph SB, Castrillo A, Laffitte BA, Mangelsdorf DJ, Tontonoz P (2003) Reciprocal regulation of inflammation and lipid metabolism by liver X receptors. Nat Med 9(2):213–219.  https://doi.org/10.1038/nm820CrossRefGoogle Scholar
  30. 30.
    Kirchgessner TG, Sleph P, Ostrowski J, Lupisella J, Ryan CS, Liu X, Fernando G, Grimm D, Shipkova P, Zhang R, Garcia R, Zhu J, He A, Malone H, Martin R, Behnia K, Wang Z, Barrett YC, Garmise RJ, Yuan L, Zhang J, Gandhi MD, Wastall P, Li T, Du S, Salvador L, Mohan R, Cantor GH, Kick E, Lee J, Frost RJ (2016) Beneficial and adverse effects of an LXR agonist on human lipid and lipoprotein metabolism and circulating neutrophils. Cell Metab 24(2):223–233.  https://doi.org/10.1016/j.cmet.2016.07.016CrossRefPubMedGoogle Scholar
  31. 31.
    Lim RK, Yu S, Cheng B, Li S, Kim NJ, Cao Y, Chi V, Kim JY, Chatterjee AK, Schultz PG, Tremblay MS, Kazane SA (2015) Targeted delivery of LXR agonist using a site-specific antibody-drug conjugate. Bioconjug Chem 26(11):2216–2222.  https://doi.org/10.1021/acs.bioconjchem.5b00203CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Yan K, Gao L-N, Cui Y-L, Zhang Y, Zhou X (2016) The cyclic AMP signaling pathway: exploring targets for successful drug discovery (review). Mol Med Rep 13(5):3715–3723.  https://doi.org/10.3892/mmr.2016.5005CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Jin SL, Ding SL, Lin SC (2012) Phosphodiesterase 4 and its inhibitors in inflammatory diseases. Chang Gung Med J 35(3):197–210PubMedGoogle Scholar
  34. 34.
    Spina D (2008) PDE4 inhibitors: current status. Br J Pharmacol 155(3):308–315.  https://doi.org/10.1038/bjp.2008.307CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Yu S, Pearson AD, Lim RK, Rodgers DT, Li S, Parker HB, Weglarz M, Hampton EN, Bollong MJ, Shen J, Zambaldo C, Wang D, Woods AK, Wright TM, Schultz PG, Kazane SA, Young TS, Tremblay MS (2016) Targeted delivery of an anti-inflammatory PDE4 inhibitor to immune cells via an antibody-drug conjugate. Mol Ther 24(12):2078–2089.  https://doi.org/10.1038/mt.2016.175CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Lee H, Bhang SH, Lee JH, Kim H, Hahn SK (2017) Tocilizumab-alendronate conjugate for treatment of rheumatoid arthritis. Bioconjug Chem 28(4):1084–1092.  https://doi.org/10.1021/acs.bioconjchem.7b00008CrossRefPubMedGoogle Scholar
  37. 37.
    Senter PD, Sievers EL (2012) The discovery and development of brentuximab vedotin for use in relapsed Hodgkin lymphoma and systemic anaplastic large cell lymphoma. Nat Biotechnol 30(7):631–637.  https://doi.org/10.1038/nbt.2289CrossRefGoogle Scholar
  38. 38.
    Granados S, Hwang ST (2004) Roles for CD30 in the biology and treatment of CD30 lymphoproliferative diseases. J Invest Dermatol 122(6):1345–1347.  https://doi.org/10.1111/j.0022-202X.2004.22616.xCrossRefPubMedGoogle Scholar
  39. 39.
    Chen YB, Perales MA, Li S, Kempner M, Reynolds C, Brown J, Efebera YA, Devine SM, El-Jawahri A, McAfee SL, Spitzer TR, Soiffer RJ, Ritz J, Cutler C (2017) Phase 1 multicenter trial of brentuximab vedotin for steroid-refractory acute graft-versus-host disease. Blood 129(24):3256–3261.  https://doi.org/10.1182/blood-2017-03-772210CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Abbvie Global BiologicsAbbVie Bioresearch CenterWorcesterUSA

Personalised recommendations