Advertisement

Purification of ADCs by Hydrophobic Interaction Chromatography

  • Calvin L. BeckerEmail author
  • Robert J. Duffy
  • Jorge Gandarilla
  • Steven M. Richter
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2078)

Abstract

Antibody-drug conjugate (ADC) in vitro potency has been shown to be dependent on drug load, with higher drug load providing lower IC50 values. However, in vivo potency is affected by intrinsic biological effects as well, such as plasma clearance, dose-limiting toxicity, etc. Developing a preparative HIC process for ADC purification to isolate species with a specific drug loading involves several steps including conjugation optimization, resin selection, solubility studies gradient screening, and step gradient development (buffer selection). In this chapter, the rationale and general considerations for developing a preparative hydrophobic interaction chromatography (HIC) method are described for isolation of an example ADC with specific drug load, e.g., two monomethyl auristatin E (MMAE) payloads (E2).

Key words

Antibody-drug conjugate (ADC) Hydrophobic interaction chromatography (HIC) Drug-antibody ratio (DAR) Lyotrope Buffers Gradient 

References

  1. 1.
    McCue JT (2009) Theory and use of hydrophobic interaction chromatography in protein purification applications. Methods Enzymol 463:405–414CrossRefGoogle Scholar
  2. 2.
    Hamblett KJ, Senter PJ et al (2004) Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin Cancer Res 10:7063–7070CrossRefGoogle Scholar
  3. 3.
    Purcell JW, Tanlimco SG et al (2018) LRRC15 is a novel Mesenchymal protein and stromal target for antibody–drug conjugates. Cancer Res 78:4059–4072CrossRefGoogle Scholar
  4. 4.
    Stump B, Steinmann J (2013) Conjugation process development and scale-up. Methods Mol Biol 1045:235–247CrossRefGoogle Scholar
  5. 5.
    Hutchison MH, Hendricks RS et al (2018) Chapter 40: process development and manufacturing of antibody-drug conjugates. In: Biopharmaceutical processing, pp 813–836Google Scholar
  6. 6.
    Torgov FG, Handley PD et al (2005) Reduction-alkylation strategies for the modification of specific monoclonal antibody disulfides. Bioconjug Chem 16(5):1282–1290CrossRefGoogle Scholar
  7. 7.
    Application note 28-9964-49 AA, High-throughput screening of HIC media in PreDictor™ plates for capturing recombinant Green Fluorescent Protein from E. coli (2011). GE Healthcare Bio-Sciences AB. http://www.processdevelopmentforum.com/files/articles/28996449AA.PDF
  8. 8.
    Machold C, Deinhofer R et al (2002) Hydrophobic interaction chromatography of proteins: I. comparison of selectivity. J Chromatogr A 972(1):3–19CrossRefGoogle Scholar
  9. 9.
    Jungbauer A, Machold C et al (2005) Hydrophobic interaction chromatography of proteins: III. Unfolding of proteins upon adsorption. J Chromatogr A 1079(1–2):221–228CrossRefGoogle Scholar
  10. 10.
    Aditya AW, Ronald TB (2006) Formulation considerations for proteins susceptible to asparagine Deamidation and aspartate isomerization. J Pharm Sci 95(11):2321–2336CrossRefGoogle Scholar
  11. 11.
    Hofmeister F (1888) Zur Lehre von der Wirkung der Salze. Archiv für experimentelle Pathologie und Pharmakologie 24(4–5):247–260Google Scholar
  12. 12.
    Kunz W, Henle J et al (2004) Zur Lehre von der Wirkung der Salze’ (about the science of the effect of salts): Franz Hofmeister’s historical papers. Curr Opin Colloid Interface Sci 9(1–2):19–37CrossRefGoogle Scholar
  13. 13.
    Phenyl Sepharose™ High Performance Butyl Sepharose High Performance (2018). https://cdn.gelifesciences.com/dmm3bwsv3/AssetStream.aspx?mediaformatid=10061&destinationid=10016&assetid=13968
  14. 14.
    <1211>Sterilization and Sterility Assurance of Compendial Articles (2011) United States Pharmacopeia (USP35-NF30) 863–867Google Scholar
  15. 15.
    Salama SEM, Mobarez EA (2015) Depyrogenation methods. Egypt J Chem Environ Health 1(1):540–551Google Scholar
  16. 16.
    Salama SEM, Mobarez EA (2015) Depyrogenation methods. Egypt J Chem Environ Health 1(1):540–551Google Scholar
  17. 17.
    Application note 18-1124-57 AI, Use of sodium hydroxide for cleaning and sanitization of chromatography media and systems (2014.) GE Healthcare Bio-Sciences AB: https://www.gelifesciences.co.jp/catalog/pdf/18112457AI_AppNote_NaOHforCIP_SIP_final_1.pdf
  18. 18.
    Impact of sporicidal agent on MabSelect SuRe™ protein A resin lifetime, 29262168 AA (2014.) GE Healthcare Bio-Sciences AB: https://cdn.gelifesciences.com/dmm3bwsv3/AssetStream.aspx?mediaformatid=10061&destinationid=10016&assetid=18576
  19. 19.
    Carta G, Jungbauer A (2010) Protein chromatography: process development and scale-up. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  20. 20.
    Hecker W, Witthauer D et al (1994) Validation of dry heat inactivation of bacterial endotoxins. PDA J Pharm Sci Technol 48(4):197–204PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Calvin L. Becker
    • 1
    Email author
  • Robert J. Duffy
    • 2
  • Jorge Gandarilla
    • 1
  • Steven M. Richter
    • 1
  1. 1.Abbvie Inc.North ChicagoUSA
  2. 2.Abbvie Inc.Redwood CityUSA

Personalised recommendations