Advertisement

An Overview of the Current ADC Discovery Landscape

  • L. Nathan TumeyEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2078)

Abstract

The prototypical ADC mechanism involving antigen-mediated uptake and lysosomal release is both elegantly simple and scientifically compelling. However, recent clinical-stage failures have prompted a reevaluation of this delivery paradigm and have resulted in an array of new technologies that have the potential to improve the safety and efficacy of up and coming programs. These innovations can generally be categorized into seven areas that will be elaborated on in this chapter: (1) Exploiting new payload mechanisms; (2) Increasing the drug–antibody ratio (DAR); (3) Increasing the antibody penetration; (4) Overcoming ADC resistance mechanisms; (5) Increasing the efficiency of ADC uptake and processing; (6) Mitigating off-target payload exposure; and (7) Employment of noncytotoxic payloads. It is our belief that these seven areas capture the current “landscape” of innovations that are taking place in the design of next-generation ADCs. Together, these advancements are reshaping the ADC field and providing a path forward in the face of the recent clinical setbacks.

Key words

ADC Resistance Toxicity Conjugation DAR Tumor penetration Payload 

References

  1. 1.
    Tumey LN, Han S (2018) ADME considerations for the development of biopharmaceutical conjugates using cleavable linkers. Curr Top Med Chem 17:3444–3462.  https://doi.org/10.2174/1568026618666180118154017CrossRefGoogle Scholar
  2. 2.
    Rago B, Clark T, King L et al (2016) Calculated conjugated payload from immunoassay and LC-MS intact protein analysis measurements of antibody-drug conjugate. Bioanalysis 8:2205–2217.  https://doi.org/10.4155/bio-2016-0160CrossRefPubMedGoogle Scholar
  3. 3.
    Tumey LN (2018) Next generation payloads for ADCs. Humana Press, Cham, pp 187–214Google Scholar
  4. 4.
    Tumey LN, Leverett CA, Vetelino B et al (2016) Optimization of tubulysin antibody-drug conjugates: a case study in addressing ADC metabolism. ACS Med Chem Lett 7:977–982.  https://doi.org/10.1021/acsmedchemlett.6b00195CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Li JY, Perry SR, Muniz-Medina V et al (2016) A biparatopic HER2-targeting antibody-drug conjugate induces tumor regression in primary models refractory to or ineligible for HER2-targeted therapy. Cancer Cell 29:117–129.  https://doi.org/10.1016/j.ccell.2015.12.008CrossRefPubMedGoogle Scholar
  6. 6.
    Burke PJ, Hamilton JZ, Pires TA et al (2016) Development of novel quaternary ammonium linkers for antibody-drug conjugates. Mol Cancer Ther 15:938–945.  https://doi.org/10.1158/1535-7163.MCT-16-0038CrossRefPubMedGoogle Scholar
  7. 7.
    Albone Earl F, Cheng X, Custar Daniel W, et al (2017) Eribulin-based antibody-drug conjugates and methods of use. International patent WO2017151979A1Google Scholar
  8. 8.
    Steinkuhler M. C, Gallinari M. P, Osswald B, et al (2016) Cryptophycin-based antibody-drug conjugates with novel self-immolative linkers. International Patent WO2016146638A1Google Scholar
  9. 9.
    Bernardes GJL, Casi G, Truessel S et al (2012) A traceless vascular-targeting antibody-drug conjugate for Cancer therapy. Angew Chemie, Int Ed 51:941–944.  https://doi.org/10.1002/anie.201106527CrossRefGoogle Scholar
  10. 10.
    Lyon RP, Bovee TD, Doronina SO et al (2015) Reducing hydrophobicity of homogeneous antibody-drug conjugates improves pharmacokinetics and therapeutic index. Nat Biotechnol 33:733–736.  https://doi.org/10.1038/nbt.3212CrossRefPubMedGoogle Scholar
  11. 11.
    Maderna A, Doroski M, Subramanyam C et al (2014) Discovery of cytotoxic Dolastatin 10 analogues with N-terminal modifications. J Med Chem 57:10527–10543.  https://doi.org/10.1021/jm501649kCrossRefPubMedGoogle Scholar
  12. 12.
    Geierstanger J, Grunewald B, Yunho OW, et al (2015) Cytotoxic peptides and conjugates thereof. US patent US20160311853Google Scholar
  13. 13.
    Kovtun YV, Audette CA, Mayo MF et al (2010) Antibody-maytansinoid conjugates designed to bypass multidrug resistance. Cancer Res 70:2528–2537.  https://doi.org/10.1158/0008-5472.CAN-09-3546CrossRefPubMedGoogle Scholar
  14. 14.
    Pillow TH, Tien J, Parsons-Reponte KL et al (2014) Site-specific trastuzumab maytansinoid antibody-drug conjugates with improved therapeutic activity through linker and antibody engineering. J Med Chem 57:7890–7899.  https://doi.org/10.1021/jm500552cCrossRefPubMedGoogle Scholar
  15. 15.
    Chowdari NS, Gangwar S, Sufi B (2013) Enediyne compounds, conjugates thereof, and uses and methods thereof. International Patent WO2013122823Google Scholar
  16. 16.
    Jeffrey SC, Burke PJ, Lyon RP et al (2013) A potent anti-CD70 antibody-drug conjugate combining a dimeric pyrrolobenzodiazepine drug with site-specific conjugation technology. Bioconjug Chem 24:1256–1263.  https://doi.org/10.1021/bc400217gCrossRefPubMedGoogle Scholar
  17. 17.
    Saunders LR, Bankovich AJ, Anderson WC et al (2015) A DLL3-targeted antibody-drug conjugate eradicates high-grade pulmonary neuroendocrine tumor-initiating cells in vivo HHS public access. Sci Transl Med 7:302–136.  https://doi.org/10.1126/scitranslmed.aac9459CrossRefGoogle Scholar
  18. 18.
    Thevanayagam L, Bell A, Chakraborty I et al (2013) Novel detection of DNA-alkylated adducts of antibody-drug conjugates with potentially unique preclinical and biomarker applications. Bioanalysis 5:1073–1081.  https://doi.org/10.4155/bio.13.57CrossRefPubMedGoogle Scholar
  19. 19.
    Carter CA, Waud WR, Li LH et al (1996) Preclinical antitumor activity of bizelesin in mice. Clin Cancer Res 2:1143–1149PubMedGoogle Scholar
  20. 20.
    Chari RVJ, Jackel KA, Bourret LA et al (1995) Enhancement of the selectivity and antitumor efficacy of a CC-1065 analog through immunoconjugate formation. Cancer Res 55:4079–4084PubMedGoogle Scholar
  21. 21.
    Walter RB (2018) Investigational CD33-targeted therapeutics for acute myeloid leukemia. Expert Opin Investig Drugs 27:339–348.  https://doi.org/10.1080/13543784.2018.1452911CrossRefPubMedGoogle Scholar
  22. 22.
    Adams B (2019) AbbVie takes $4B hit on Rova-T failures. https://www.fiercebiotech.com/biotech/abbvie-takes-4b-hit-rova-t-failures. Accessed 18 Feb 2019
  23. 23.
    Lerchen H-G, Wittrock S, Stelte-Ludwig B et al (2018) Antibody-drug conjugates with Pyrrole-based KSP inhibitors as the payload class. Angew Chemie Int Ed 57:15243–15247.  https://doi.org/10.1002/anie.201807619CrossRefGoogle Scholar
  24. 24.
    Loganzo F, Sung M, Gerber H-P (2016) Mechanisms of resistance to antibody–drug conjugates. Mol Cancer Ther 15:2825–2834.  https://doi.org/10.1158/1535-7163.MCT-16-0408CrossRefPubMedGoogle Scholar
  25. 25.
    Puthenveetil S, Loganzo F, He H et al (2016) Natural product splicing inhibitors: a new class of antibody-drug conjugate (ADC) payloads. Bioconjug Chem 27.  https://doi.org/10.1021/acs.bioconjchem.6b00291CrossRefGoogle Scholar
  26. 26.
    Puthenveetil S, He H, Loganzo F et al (2017) Multivalent peptidic linker enables identification of preferred sites of conjugation for a potent thialanstatin antibody drug conjugate. PLoS One 12.  https://doi.org/10.1371/journal.pone.0178452CrossRefPubMedCentralGoogle Scholar
  27. 27.
    Tumey LN, Li F, Rago B et al (2017) Site selection: a case study in the identification of optimal cysteine engineered antibody drug conjugates. AAPS J 19.  https://doi.org/10.1208/s12248-017-0083-7CrossRefGoogle Scholar
  28. 28.
    Bessire AJ, Ballard TE, Charati M et al (2016) Determination of antibody-drug conjugate released payload species using directed in vitro assays and mass spectrometric interrogation. Bioconjug Chem 27:1645–1654.  https://doi.org/10.1021/acs.bioconjchem.6b00192CrossRefGoogle Scholar
  29. 29.
    Moldenhauer G, Salnikov AV, Lüttgau S et al (2012) Therapeutic potential of amanitin-conjugated anti-epithelial cell adhesion molecule monoclonal antibody against pancreatic carcinoma. J Natl Cancer Inst 104:622–634.  https://doi.org/10.1093/jnci/djs140CrossRefPubMedGoogle Scholar
  30. 30.
    Grunewald J, Jin Y, Ou W, Uno T (2016) Preparation of amatoxin derivatives and their immunoconjugates as inhibitors of RNA polymerase for treating cell proliferative disorders. International patent WO2016071856 A1Google Scholar
  31. 31.
    Mendelsohn BA, Moon SJ (2013) Amatoxin derivatives and cell-permeable conjugates thereof as inhibitors of RNA polymerase. International patent WO2014043403 A1Google Scholar
  32. 32.
    Muller C, Anderl J, Simon W, et al (2014) Amatoxin derivatives. International patent WO2014/135282Google Scholar
  33. 33.
    Liu Y, Zhang X, Han C et al (2015) TP53 loss creates therapeutic vulnerability in colorectal cancer. Nature 520(7549):697–701.  https://doi.org/10.1038/nature14418CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Karpov AS, Abrams T, Clark S et al (2018) Nicotinamide phosphoribosyltransferase inhibitor as a novel payload for antibody-drug conjugates. ACS Med Chem Lett 9:838–842.  https://doi.org/10.1021/acsmedchemlett.8b00254CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Neumann CS, Olivas KC, Anderson ME et al (2018) Targeted delivery of cytotoxic NAMPT inhibitors using antibody-drug conjugates. Mol Cancer Ther 17(12):2633–2642.  https://doi.org/10.1158/1535-7163.MCT-18-0643CrossRefPubMedGoogle Scholar
  36. 36.
    Tao Z-F, Doherty G, Wang X, et al (2016) Preparation of Bcl-xL inhibitory compounds having low cell permeability and antibody drug conjugates containing them. International patent WO2016094509 A1Google Scholar
  37. 37.
    Ackler SL, Bennett NB, Boghaert ER, et al (2016) Bcl-xl inhibitory compounds and antibody drug conjugates including the same. United States patent US20160158377A1Google Scholar
  38. 38.
    Zhao RY, Wilhelm SD, Audette C et al (2011) Synthesis and evaluation of hydrophilic linkers for antibody-maytansinoid conjugates. J Med Chem 54:3606–3623.  https://doi.org/10.1021/jm2002958CrossRefPubMedGoogle Scholar
  39. 39.
    Hamblett KJ, Senter PD, Chace DF et al (2004) Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin Cancer Res 10:7063–7070.  https://doi.org/10.1158/1078-0432.CCR-04-0789CrossRefPubMedGoogle Scholar
  40. 40.
    Ogitani Y, Aida T, Hagihara K et al (2016) DS-8201a, a novel HER2-targeting ADC with a novel DNA topoisomerase I inhibitor, demonstrates a promising antitumor efficacy with differentiation from T-DM1. Clin Cancer Res 22:5097–5108.  https://doi.org/10.1158/1078-0432.CCR-15-2822CrossRefPubMedGoogle Scholar
  41. 41.
    Lyon RP, Setter JR, Bovee TD et al (2014) Self-hydrolyzing maleimides improve the stability and pharmacological properties of antibody-drug conjugates. Nat Biotechnol 32:1059–1062.  https://doi.org/10.1038/nbt.2968CrossRefPubMedGoogle Scholar
  42. 42.
    Kern JC, Cancilla M, Dooney D et al (2016) Discovery of pyrophosphate diesters as tunable, soluble, and bioorthogonal linkers for site-specific antibody-drug conjugates. J Am Chem Soc 138:1430–1445.  https://doi.org/10.1021/jacs.5b12547CrossRefPubMedGoogle Scholar
  43. 43.
    Kern JC, Dooney D, Zhang R et al (2016) Novel phosphate modified cathepsin B linkers: improving aqueous solubility and enhancing payload scope of ADCs. Bioconjug Chem 27:2081–2088.  https://doi.org/10.1021/acs.bioconjchem.6b00337CrossRefGoogle Scholar
  44. 44.
    Lin R-H, Lin S-Y, Hsieh Y-C, Huang C-C (2014) Hydrophilic self-immolative linkers and conjugates thereof. United States patent US9089614B2Google Scholar
  45. 45.
    Benjamin SR, Jackson CP, Fang S et al (2019) Thiolation of Q295: site-specific conjugation of hydrophobic payloads without the need for genetic engineering. Mol Pharm 16(6):2795–2807. acs.molpharmaceut.9b00323.  https://doi.org/10.1021/acs.molpharmaceut.9b00323CrossRefPubMedGoogle Scholar
  46. 46.
    Strop P, Delaria K, Foletti D et al (2015) Site-specific conjugation improves therapeutic index of antibody drug conjugates with high drug loading. Nat Biotechnol 33:694–696.  https://doi.org/10.1038/nbt.3274CrossRefGoogle Scholar
  47. 47.
    Shih LB, Goldenberg DM, Xuan H et al (1991) Anthracycline immunoconjugates prepared by a site-specific linkage via an amino-dextran intermediate carrier. Cancer Res 51:4192–4198PubMedGoogle Scholar
  48. 48.
    Yurkovetskiy AV, Yin M, Bodyak N et al (2015) A polymer-based antibody-vinca drug conjugate platform: characterization and preclinical efficacy. Cancer Res 75:3365–3372.  https://doi.org/10.1158/0008-5472.CAN-15-0129CrossRefPubMedGoogle Scholar
  49. 49.
    Li Z, Krippendorff B-F, Sharma S et al (2016) Influence of molecular size on tissue distribution of antibody fragments. MAbs 8:113–119.  https://doi.org/10.1080/19420862.2015.1111497CrossRefPubMedGoogle Scholar
  50. 50.
    Puthenveetil S, Musto S, Loganzo F et al (2016) Development of solid-phase site-specific conjugation and its application toward generation of dual labeled antibody and fab drug conjugates. Bioconjug Chem 27(4):1030–1039.  https://doi.org/10.1021/acs.bioconjchem.6b00054CrossRefPubMedGoogle Scholar
  51. 51.
    Woitok M, Klose D, Di Fiore S et al (2017) OncoTargets and therapy Dovepress comparison of a mouse and a novel human scFv-snaP-auristatin F drug conjugate with potent activity against egFr-overexpressing human solid tumor cells. Onco Targets Ther:10–3313.  https://doi.org/10.2147/OTT.S140492CrossRefGoogle Scholar
  52. 52.
    Pola R, Král V, Filippov SK et al (2019) Polymer cancerostatics targeted by recombinant antibody fragments to GD2-positive tumor cells. Biomacromolecules 20:412–421.  https://doi.org/10.1021/acs.biomac.8b01616CrossRefPubMedGoogle Scholar
  53. 53.
    Deonarain MP, Yahioglu G, Stamati I, Marklew J (2015) Emerging formats for next-generation antibody drug conjugates. Expert Opin Drug Discov 10:463–481.  https://doi.org/10.1517/17460441.2015.1025049CrossRefPubMedGoogle Scholar
  54. 54.
    Bannas P, Hambach J, Koch-Nolte F (2017) Nanobodies and nanobody-based human heavy chain antibodies as antitumor therapeutics. Front Immunol 8:1603.  https://doi.org/10.3389/fimmu.2017.01603CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Patricia Herrington-Symes A, Farys M, Khalili H, Brocchini S (2013) Antibody fragments: prolonging circulation half-life special issue-antibody research. Adv Biosci Biotechnol 4:689–698.  https://doi.org/10.4236/abb.2013.45090CrossRefGoogle Scholar
  56. 56.
    Schneider EL, Hearn BR, Pfaff SJ et al (2016) Approach for half-life extension of small antibody fragments that does not affect tissue uptake. Bioconjug Chem 27:2534–2539.  https://doi.org/10.1021/acs.bioconjchem.6b00469CrossRefPubMedGoogle Scholar
  57. 57.
    García-Alonso S, Ocaña A, Pandiella A (2018) Resistance to antibody–drug conjugates. Cancer Res 78:2159–2165.  https://doi.org/10.1158/0008-5472.CAN-17-3671CrossRefPubMedGoogle Scholar
  58. 58.
    Loganzo F, Tan X, Sung M et al (2015) Tumor cells chronically treated with a trastuzumab-maytansinoid antibody-drug conjugate develop varied resistance mechanisms but respond to alternate treatments. Mol Cancer Ther 14:952–963.  https://doi.org/10.1158/1535-7163.MCT-14-0862CrossRefPubMedGoogle Scholar
  59. 59.
    Chen R, Hou J, Newman E et al (2015) CD30 Downregulation, MMAE resistance, and MDR1 upregulation are all associated with resistance to brentuximab vedotin. Mol Cancer Ther 14:1376–1384.  https://doi.org/10.1158/1535-7163.MCT-15-0036CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Erickson HK, Lewis Phillips GD, Leipold DD et al (2012) The effect of different linkers on target cell catabolism and pharmacokinetics/pharmacodynamics of trastuzumab maytansinoid conjugates. Mol Cancer Ther 11:1133–1142.  https://doi.org/10.1158/1535-7163.mct-11-0727CrossRefPubMedGoogle Scholar
  61. 61.
    Flygare JA, Pillow T, Staben L (2016) Quaternary amine compounds and antibody-drug conjugates thereof. United States patent US20170232113A1Google Scholar
  62. 62.
    Yu SF, Zheng B, Go M et al (2015) A novel anti-CD22 anthracycline-based antibody-drug conjugate (ADC) that overcomes resistance to auristatin-based ADCs. Clin Cancer Res 21:3298–3306.  https://doi.org/10.1158/1078-0432.CCR-14-2035CrossRefPubMedGoogle Scholar
  63. 63.
    Ríos-Luci C, García-Alonso S, Díaz-Rodríguez E et al (2017) Resistance to the antibody–drug conjugate T-DM1 is based in a reduction in lysosomal proteolytic activity. Cancer Res 77:4639–4651.  https://doi.org/10.1158/0008-5472.CAN-16-3127CrossRefPubMedGoogle Scholar
  64. 64.
    Wang H, Wang W, Xu Y et al (2017) Aberrant intracellular metabolism of T-DM1 confers T-DM1 resistance in HER2-positive gastric cancer cells. Cancer Sci 8(7):1458–1468.  https://doi.org/10.1111/cas.13253CrossRefGoogle Scholar
  65. 65.
    Pillow TH, Lee B-C, Ma Y et al (2017) Cathepsin B is dispensable for cellular processing of cathepsin B-cleavable antibody–drug conjugates. Cancer Res 77:7027–7037.  https://doi.org/10.1158/0008-5472.can-17-2391CrossRefPubMedGoogle Scholar
  66. 66.
    Kolakowski RV, Haelsig KT, Emmerton KK et al (2016) The methylene Alkoxy carbamate self-immolative unit: utilization for the targeted delivery of alcohol-containing payloads with antibody???Drug conjugates. Angew Chemie - Int Ed 55:7948–7951.  https://doi.org/10.1002/anie.201601506CrossRefGoogle Scholar
  67. 67.
    Kovtun YV, Audette CA, Ye Y et al (2006) Antibody-drug conjugates designed to eradicate tumors with homogeneous and heterogeneous expression of the target antigen. Cancer Res 66:3214–3221.  https://doi.org/10.1158/0008-5472.CAN-05-3973CrossRefGoogle Scholar
  68. 68.
    DeVay RM, Delaria K, Zhu G et al (2017) Improved lysosomal trafficking can modulate the potency of antibody drug conjugates. Bioconjug Chem 28(4):1102–1114. acs.bioconjchem.7b00013.  https://doi.org/10.1021/acs.bioconjchem.7b00013CrossRefPubMedGoogle Scholar
  69. 69.
    Austin CD, De Maziè AM, Pisacane PI et al (2004) Endocytosis and sorting of ErbB2 and the site of action of Cancer therapeutics trastuzumab and geldanamycin. Mol Biol Cell 15:5268–5282.  https://doi.org/10.1091/mbc.E04CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    de Goeij BE, Vink T, Ten Napel H et al (2016) Efficient payload delivery by a bispecific antibody-drug conjugate targeting HER2 and CD63. Mol Cancer Ther 15(11):2688–2697CrossRefGoogle Scholar
  71. 71.
    Andreev J, Thambi N, Perez Bay AE et al (2017) Bispecific antibodies and antibody–drug conjugates (ADCs) bridging HER2 and prolactin receptor improve efficacy of HER2 ADCs. Mol Cancer Ther 16:681–693.  https://doi.org/10.1158/1535-7163.MCT-16-0658CrossRefPubMedGoogle Scholar
  72. 72.
    Press release, Seattle Genetics, Inc.; “Seattle genetics discontinues phase 3 CASCADE trial of vadastuximab talirine (SGN-CD33A) in frontline acute myeloid leukemia. http://investor.seattlegenetics.com/news-releases/news-release-details/seattle-genetics-discontinues-phase-3-cascade-trial-vadastuximab. Accessed 7 May 2019
  73. 73.
    King GT, Eaton KD, Beagle BR et al (2018) A phase 1, dose-escalation study of PF-06664178, an anti-Trop-2/Aur0101 antibody-drug conjugate in patients with advanced or metastatic solid tumors. Investig New Drugs 36:836–847.  https://doi.org/10.1007/s10637-018-0560-6CrossRefGoogle Scholar
  74. 74.
    Strop P, Tran T-T, Dorywalska M et al (2016) RN927C, a site-specific Trop-2 antibody-drug conjugate (ADC) with enhanced stability, is highly efficacious in preclinical solid tumor models. Mol Cancer Ther 15:2698–2708.  https://doi.org/10.1158/1535-7163.MCT-16-0431CrossRefPubMedGoogle Scholar
  75. 75.
    Lyon R (2018) Drawing lessons from the clinical development of antibody-drug conjugates. Drug Discov Today Technol 30:105–109.  https://doi.org/10.1016/J.DDTEC.2018.10.001CrossRefPubMedGoogle Scholar
  76. 76.
    Masters JC, Nickens DJ, Xuan D et al (2018) Clinical toxicity of antibody drug conjugates: a meta-analysis of payloads. Investig New Drugs 36(1):121–135CrossRefGoogle Scholar
  77. 77.
    Alley SC, Benjamin DR, Jeffrey SC et al (2008) Contribution of linker stability to the activities of anticancer immunoconjugates. Bioconjug Chem 19:759–765.  https://doi.org/10.1021/bc7004329CrossRefGoogle Scholar
  78. 78.
    Tumey LNN, Charati M, He T et al (2014) Mild method for succinimide hydrolysis on ADCs: impact on ADC potency, stability, exposure, and efficacy. Bioconjug Chem 25:1871–1880.  https://doi.org/10.1021/bc500357nCrossRefPubMedGoogle Scholar
  79. 79.
    Shen B-Q, Xu K, Liu L et al (2012) Conjugation site modulates the in vivo stability and therapeutic activity of antibody-drug conjugates. Nat Biotechnol 30:184–189.  https://doi.org/10.1038/nbt.2108CrossRefGoogle Scholar
  80. 80.
    Ohri R, Bhakta S, Fourie-O’Donohue A et al (2018) High-throughput cysteine scanning to identify stable antibody conjugation sites for maleimide- and disulfide-based linkers. Bioconjug Chem 29(2):473–485.  https://doi.org/10.1021/acs.bioconjchem.7b00791CrossRefGoogle Scholar
  81. 81.
    Junutula JR, Flagella KM, Graham RA et al (2010) Engineered thio-trastuzumab-DM1 conjugate with an improved therapeutic index to target human epidermal growth factor receptor 2-positive breast cancer. Clin Cancer Res 16:4769–4778.  https://doi.org/10.1158/1078-0432.CCR-10-0987CrossRefPubMedGoogle Scholar
  82. 82.
    Nunes JPM, Vassileva V, Robinson E et al (2017) Use of a next generation maleimide in combination with THIOMAB™ antibody technology delivers a highly stable, potent and near homogeneous THIOMAB™ antibody-drug conjugate (TDC). RSC Adv 7:24828–24832.  https://doi.org/10.1039/C7RA04606ECrossRefGoogle Scholar
  83. 83.
    Kolodych S, Koniev O, Baatarkhuu Z et al (2015) CBTF: new amine-to-Thiol coupling reagent for preparation of antibody conjugates with increased plasma stability. Bioconjug Chem 26:197–200.  https://doi.org/10.1021/bc500610gCrossRefPubMedGoogle Scholar
  84. 84.
    Badescu G, Bryant P, Swierkosz J et al (2014) A new reagent for stable Thiol-specific conjugation. Bioconjug Chem 25:460–469.  https://doi.org/10.1021/bc400245vCrossRefPubMedGoogle Scholar
  85. 85.
    Patterson JT, Asano S, Li X, et al (2015) Improving the serum stability of site-Specific antibody conjugates with Sulfone linkers. Bioconj Chem 25(8):1402–1407CrossRefPubMedCentralGoogle Scholar
  86. 86.
    Dennler P, Chiotellis A, Fischer E et al (2014) Transglutaminase-based chemo-enzymatic conjugation approach yields homogeneous antibody-drug conjugates. Bioconjug Chem 25:569–578.  https://doi.org/10.1021/bc400574zCrossRefGoogle Scholar
  87. 87.
    Strop P, Liu S-HH, Dorywalska M et al (2013) Location matters: site of conjugation modulates stability and pharmacokinetics of antibody drug conjugates. Chem Biol 20:161–167.  https://doi.org/10.1016/j.chembiol.2013.01.010CrossRefGoogle Scholar
  88. 88.
    Stefan N, Gébleux R, Waldmeier L et al (2017) Highly potent, anthracycline-based antibody-drug conjugates generated by enzymatic, site-specific conjugation. Mol Cancer Ther 16:879–892.  https://doi.org/10.1158/1535-7163.MCT-16-0688CrossRefPubMedGoogle Scholar
  89. 89.
    Beerli RR, Hell T, Merkel AS, Grawunder U (2015) Sortase enzyme-mediated generation of site-specifically conjugated antibody drug conjugates with high in vitro and in vivo potency. PLoS One 10(7):e0131177.  https://doi.org/10.1371/journal.pone.0131177CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Zimmerman ES, Heibeck TH, Gill A et al (2014) Production of site-specific antibody-drug conjugates using optimized non-natural amino acids in a cell-free expression system. Bioconjug Chem 25:351–361.  https://doi.org/10.1021/bc400490zCrossRefGoogle Scholar
  91. 91.
    Axup Jun Y, Bajjuri Krishna M, Ritland M et al (2012) Synthesis of site-specific antibody-drug conjugates using unnatural amino acids. Proc Natl Acad Sci U S A 109:16101–16106CrossRefPubMedCentralGoogle Scholar
  92. 92.
    Chio TI, Gu H, Mukherjee K et al (2019) Site-specific bioconjugation and multi-bioorthogonal labeling via rapid formation of a boron–nitrogen heterocycle. Bioconjug Chem 30(5):1554–1564. acs.bioconjchem.9b00246.  https://doi.org/10.1021/acs.bioconjchem.9b00246CrossRefGoogle Scholar
  93. 93.
    Patterson DM, Prescher JA (2015) Orthogonal bioorthogonal chemistries. Curr Opin Chem Biol 28:141–149.  https://doi.org/10.1016/J.CBPA.2015.07.006CrossRefPubMedGoogle Scholar
  94. 94.
    Qasba PK (2015) Glycans of antibodies as a specific site for drug conjugation using glycosyltransferases. Bioconjug Chem 26:2170–2175.  https://doi.org/10.1021/acs.bioconjchem.5b00173CrossRefPubMedGoogle Scholar
  95. 95.
    Bruins JJ, Westphal AH, Albada B et al (2017) Inducible, site-specific protein Labeling by tyrosine oxidation-strain-promoted (4 + 2) cycloaddition. Bioconjug Chem 28:1189–1193.  https://doi.org/10.1021/acs.bioconjchem.7b00046CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Tsuchikama K, An Z (2018) Antibody-drug conjugates: recent advances in conjugation and linker chemistries. Protein Cell 9:33–46.  https://doi.org/10.1007/s13238-016-0323-0CrossRefPubMedGoogle Scholar
  97. 97.
    Gao W, Zhang J, Xiang J et al (2016) Recent advances in site specific conjugations of antibody drug conjugates (ADCs). Curr Cancer Drug Targets 16:469–479CrossRefGoogle Scholar
  98. 98.
    Dorywalska M, Dushin R, Moine L et al (2016) Molecular basis of valine-citrulline-PABC linker instability in site-specific ADCs and its mitigation by linker design. Mol Cancer Ther 15(5):958–970.  https://doi.org/10.1158/1535-7163.MCT-15-1004CrossRefPubMedGoogle Scholar
  99. 99.
    Singh R, Setiady YY, Ponte J et al (2016) A new triglycyl peptide linker for antibody-drug conjugates (ADCs) with improved targeted killing of cancer cells. Mol Cancer Ther 15:1311–1320.  https://doi.org/10.1158/1535-7163.MCT-16-0021CrossRefPubMedGoogle Scholar
  100. 100.
    Anami Y, Yamazaki CM, Xiong W et al (2018) Glutamic acid-valine-citrulline linkers ensure stability and efficacy of antibody-drug conjugates in mice. Nat Commun 9:2512.  https://doi.org/10.1038/s41467-018-04982-3CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Jeffrey SC, Andreyka JB, Bernhardt SX et al (2006) Development and properties of β-Glucuronide linkers for monoclonal antibody-drug conjugates. Bioconjug Chem 17:831–840.  https://doi.org/10.1021/bc0600214CrossRefPubMedGoogle Scholar
  102. 102.
    Li F, Ulrich M, Jonas M et al (2017) Tumor-associated macrophages can contribute to antitumor activity through FcγR-mediated processing of antibody–drug conjugates. Mol Cancer Ther 16(7):1347–1354.  https://doi.org/10.1158/1535-7163.mct-17-0019CrossRefPubMedGoogle Scholar
  103. 103.
    Pawlowski JW, Bajardi-Taccioli A, Houde D et al (2018) Influence of glycan modification on IgG1 biochemical and biophysical properties. J Pharm Biomed Anal 151:133–144.  https://doi.org/10.1016/j.jpba.2017.12.061CrossRefPubMedGoogle Scholar
  104. 104.
    Hamblett KJ, Le T, Rock BM et al (2016) Altering antibody-drug conjugate binding to the neonatal fc receptor impacts efficacy and tolerability. Mol Pharm 13:2387–2396.  https://doi.org/10.1021/acs.molpharmaceut.6b00153CrossRefPubMedGoogle Scholar
  105. 105.
    Brachet G, Respaud R, Arnoult C et al (2016) Increment in drug loading on an antibody–drug conjugate increases its binding to the human neonatal fc receptor in vitro. Mol Pharm 13:1405–1412.  https://doi.org/10.1021/acs.molpharmaceut.6b00082CrossRefPubMedGoogle Scholar
  106. 106.
    Brandish PE, Palmieri A, Antonenko S et al (2018) Development of anti-CD74 antibody–drug conjugates to target glucocorticoids to immune cells. Bioconjug Chem 29:2357–2369.  https://doi.org/10.1021/acs.bioconjchem.8b00312CrossRefGoogle Scholar
  107. 107.
    Zhao H, Gulesserian S, Malinao MC et al (2017) A potential mechanism for ADC-induced neutropenia: role of neutrophils in their own demise. Mol Cancer Ther 16:1866–1876.  https://doi.org/10.1158/1535-7163.MCT-17-0133CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Pharmacy and Pharmaceutical SciencesBinghamton UniversityBinghamtonUSA
  2. 2.Pfizer Inc.GrotonUSA

Personalised recommendations