Advertisement

Chimeric RNA pp 95-107 | Cite as

Detection of Group II Intron-Generated Chimeric mRNAs in Bacterial Cells

  • Félix LaRoche-Johnston
  • Caroline Monat
  • Benoit CousineauEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2079)

Abstract

Chimeric RNAs are the transcripts composed of exons from two separate genes or transcripts. Although the presence of these joined RNA molecules have mainly been documented in a variety of eukaryotes, we recently demonstrated that the Ll.LtrB group II intron, from the gram-positive bacterium Lactococcus lactis, can generate chimeric mRNAs through a novel intergenic trans-splicing pathway. Here we describe the detailed experimental procedures to detect group II intron-generated mRNA–mRNA chimeras from total RNA extracts using stringent reverse transcription conditions along with a reverse splicing-deficient group II intron as a negative control.

Key words

Group II intron Ll.LtrB Bacteria Lactococcus lactis Trans-splicing Chimeric mRNA Circular RNA Circularization 

References

  1. 1.
    Chwalenia K, Facemire L, Li H (2017) Chimeric RNAs in cancer and normal physiology. Wiley Interdiscip Rev RNA 8(6).  https://doi.org/10.1002/wrna.1427CrossRefGoogle Scholar
  2. 2.
    Lasda EL, Blumenthal T (2011) Trans-splicing. Wiley Interdiscip Rev RNA 2(3):417–434.  https://doi.org/10.1002/wrna.71CrossRefPubMedGoogle Scholar
  3. 3.
    Kumar S, Razzaq SK, Vo AD, Gautam M, Li H (2016) Identifying fusion transcripts using next generation sequencing. Wiley Interdiscip Rev RNA 7(6):811–823.  https://doi.org/10.1002/wrna.1382CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Yu CY, Liu HJ, Hung LY, Kuo HC, Chuang TJ (2014) Is an observed non-co-linear RNA product spliced in trans, in cis or just in vitro? Nucleic Acids Res 42(14):9410–9423.  https://doi.org/10.1093/nar/gku643CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Cocquet J, Chong A, Zhang G, Veitia RA (2006) Reverse transcriptase template switching and false alternative transcripts. Genomics 88(1):127–131.  https://doi.org/10.1016/j.ygeno.2005.12.013CrossRefPubMedGoogle Scholar
  6. 6.
    Houseley J, Tollervey D (2010) Apparent non-canonical trans-splicing is generated by reverse transcriptase in vitro. PLoS One 5(8):e12271.  https://doi.org/10.1371/journal.pone.0012271CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Lei Q, Li C, Zuo Z, Huang C, Cheng H, Zhou R (2016) Evolutionary Insights into RNA trans-Splicing in Vertebrates. Genome Biol Evol 8(3):562–577.  https://doi.org/10.1093/gbe/evw025CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    LaRoche-Johnston F, Monat C, Coulombe S, Cousineau B (2018) Bacterial group II introns generate genetic diversity by circularization and trans-splicing from a population of intron-invaded mRNAs. PLoS Genet 14(11):e1007792.  https://doi.org/10.1371/journal.pgen.1007792CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Monat C, Quiroga C, Laroche-Johnston F, Cousineau B (2015) The Ll.LtrB intron from Lactococcus lactis excises as circles in vivo: insights into the group II intron circularization pathway. RNA 21(7):1286–1293.  https://doi.org/10.1261/rna.046367.114CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Monat C, Cousineau B (2016) Circularization pathway of a bacterial group II intron. Nucleic Acids Res 44(4):1845–1853.  https://doi.org/10.1093/nar/gkv1381CrossRefPubMedGoogle Scholar
  11. 11.
    Alting-Mees MA, Short JM (1989) pBluescript II: gene mapping vectors. Nucleic Acids Res 17(22):9494CrossRefGoogle Scholar
  12. 12.
    LeBlanc DJ, Lee LN, Abu-Al-Jaibat A (1992) Molecular, genetic, and functional analysis of the basic replicon of pVA380-1, a plasmid of oral streptococcal origin. Plasmid 28(2):130–145CrossRefGoogle Scholar
  13. 13.
    LaRoche-Johnston F, Monat C, Cousineau B (2016) Recent horizontal transfer, functional adaptation and dissemination of a bacterial group II intron. BMC Evol Biol 16(1):223.  https://doi.org/10.1186/s12862-016-0789-7CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Mills DA, Choi CK, Dunny GM, McKay LL (1994) Genetic analysis of regions of the Lactococcus lactis subsp. lactis plasmid pRS01 involved in conjugative transfer. Appl Environ Microbiol 60(12):4413–4420PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Félix LaRoche-Johnston
    • 1
  • Caroline Monat
    • 1
  • Benoit Cousineau
    • 1
    Email author
  1. 1.Department of Microbiology and ImmunologyMcGill UniversityMontréalCanada

Personalised recommendations