Prediction, Characterization, and In Silico Validation of Chimeric RNAs

  • Sandeep Singh
  • Hui LiEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2079)


Many chimeric RNA prediction software packages are available to assist the scientific community in searching for cancer-specific chimeric RNAs. These packages predict a large number of false positive events, which significantly hampers experimental validation of predicted chimeric RNAs. Here, we describe the detailed steps for (1) prediction of chimeric RNAs using EricScript software, (2) characterization of chimeric RNAs to discard most probable false positive events, and (3) in silico validation of chimeric RNA to select the potential cancer-specific events.

Key words

Chimeric RNA prediction In silico validation EricScript Installation and setup AGREP 


  1. 1.
    Benelli M, Pescucci C, Marseglia G et al (2012) Discovering chimeric transcripts in paired-end RNA-seq data by using EricScript. Bioinformatics 28:3232–3239CrossRefGoogle Scholar
  2. 2.
    Jia W, Qiu K, He M et al (2013) SOAPfuse: an algorithm for identifying fusion transcripts from paired-end RNA-Seq data. Genome Biol 14:R12CrossRefGoogle Scholar
  3. 3.
    Davidson NM, Majewski IJ, Oshlack A (2015) JAFFA: High sensitivity transcriptome-focused fusion gene detection. Genome Med 7:43CrossRefGoogle Scholar
  4. 4.
    Kumar S, Vo AD, Qin F et al (2016) Comparative assessment of methods for the fusion transcripts detection from RNA-Seq data. Sci Rep 6:21597CrossRefGoogle Scholar
  5. 5.
    Zerbino DR, Achuthan P, Akanni W et al (2018) Ensembl 2018. Nucleic Acids Res 46:D754–D761CrossRefGoogle Scholar
  6. 6.
    Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/Map format and SAMtools. Bioinformatics 25:2078–2079CrossRefGoogle Scholar
  7. 7.
    Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842CrossRefGoogle Scholar
  8. 8.
    Patel RK, Jain M (2012) NGS QC Toolkit: a toolkit for quality control of next generation sequencing data. PLoS One 7:e30619CrossRefGoogle Scholar
  9. 9.
    Wu S (University of A and Manber U) (1990) AGREP—a fast approximate pattern-matching tool. In: Proceedings of the Winter 1990 USENIX Conference. USENIX Association, San Francisco, pp 153–162Google Scholar
  10. 10.
    Andrews S FASTQC: A quality control tool for high throughput sequence data.
  11. 11.
    Pandey RV, Pabinger S, Kriegner A et al (2016) ClinQC: a tool for quality control and cleaning of Sanger and NGS data in clinical research. BMC Bioinformatics 17:56CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Pathology, School of MedicineUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations