Advertisement

Methods to Quantify DNA Transfer in Enterococcus

  • Carla NovaisEmail author
  • Ana R. Freitas
  • Ricardo León-Sampedro
  • Luísa Peixe
  • Teresa M. CoqueEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2075)

Abstract

DNA uptake in Enterococcus normally occurs by conjugation, a natural process that is replicated in biomedical research to assess the transferability of different mobile genetic elements and chromosomal regions as well as to study the host range of plasmids and other conjugative elements. More efficient artificial methods to transform cells with foreign DNA as chemotransformation and electroporation are widely used in molecular genetics. Here, we described conjugation protocols to quantify DNA transfer among Enterococcus and revise current perspectives and lab strains. Protocols of electrotransformation have been previously described in this series.

Key words

Conjugation Plasmids Conjugative transposons (CTn) Integrative conjugative elements (ICEs) Horizontal gene transfer (HGT) Enterococcus 

References

  1. 1.
    Friesenegger A, Fiedler S, Devriese LA et al (1991) Genetic transformation of various species of Enterococcus by electroporation. FEMS Microbiol Lett 63(2–3):323–327CrossRefPubMedGoogle Scholar
  2. 2.
    Shepard BD, Gilmore MS (1995) Electroporation and efficient transformation of Enterococcus faecalis grown in high concentrations of glycine. In: Nickoloff JA (ed) Electroporation protocols for microorganisms. Methods in molecular biology™, vol 47. Humana Press, New YorkGoogle Scholar
  3. 3.
    Simonsen L, Gordon DM, Stewart FM et al (1990) Estimating the rate of plasmid transfer: an endpoint method. J Gen Microbiol 136:2319–2325CrossRefPubMedGoogle Scholar
  4. 4.
    Dunny GM, Craig RA, Carron RL et al (1979) Plasmid transfer in Streptococcus faecalis: production of multiple sex pheromones by recipients. Plasmid 2:454–465CrossRefPubMedGoogle Scholar
  5. 5.
    de Freire Bastos MC, Tanimoto K, Clewell DB (1997) Regulation of transfer of the Enterococcus faecalis pheromone-responding plasmid pAD1: temperature-sensitive transfer mutants and identification of a new regulatory determinant, traD. J Bacteriol 179:3250–3259CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    de Niederhäusern S, Bondi M, Messi P et al (2011) Vancomycin-resistance transferability from VanA enterococci to Staphylococcus aureus. Curr Microbiol 62:1363–1367CrossRefPubMedGoogle Scholar
  7. 7.
    Werner G, Freitas AR, Coque TM et al (2011) Host range of enterococcal vanA plasmids among gram-positive intestinal bacteria. J Antimicrob Chemother 66(2):273–282CrossRefPubMedGoogle Scholar
  8. 8.
    Malwade A, Nguyen A, Sadat-Mousavi P et al (2017) Predictive modeling of batch filter mating process. Front Microbiol 8:461CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Babic A, Berkmen MB, Lee CA et al (2011) Efficient gene transfer in bacterial cell chains. MBio 2(2):pii: e00027-11CrossRefGoogle Scholar
  10. 10.
    Arends K, Schiwon K, Sakinc T et al (2012) Green fluorescent protein-labeled monitoring tool to quantify conjugative plasmid transfer between gram-positive and gram-negative bacteria. App Environ Microbiol 78:895–899CrossRefGoogle Scholar
  11. 11.
    Lorenzo-Díaz F, Espinosa M (2009) Large-scale filter mating assay for intra-and inter-specific conjugal transfer of the promiscuous plasmid pMV158 in gram-positive bacteria. Plasmid 61(1):65–70CrossRefPubMedGoogle Scholar
  12. 12.
    Lanza VF, Tedim AP, Martínez JL et al (2015) The Plasmidome of firmicutes: impact on the emergence and the spread of resistance to antimicrobials. Microbiol Spectr 3(2):PLAS-0039-2014CrossRefPubMedGoogle Scholar
  13. 13.
    Hannan S, Ready D, Jasni AS et al (2010) Transfer of antibiotic resistance by transformation with eDNA within oral biofilms. FEMS Immunol Med Microbiol 59:345–349CrossRefPubMedGoogle Scholar
  14. 14.
    Cook L, Chatterjee A, Barnes A et al (2011) Biofilm growth alters regulation of conjugation by a bacterial pheromone. Mol Microbiol 81:1499–1510CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Ramsay JP, Firth N (2017) Diverse mobilization strategies facilitate transfer of non-conjugative mobile genetic elements. Curr Opin Microbiol 38:1–9CrossRefPubMedGoogle Scholar
  16. 16.
    Freitas AR, Tedim AP, Francia MV et al (2016) Multilevel population genetic analysis of vanA and vanB Enterococcus faecium causing nosocomial outbreaks in 27 countries (1986-2012). Antimicrob Chemother 71:3351–3366CrossRefGoogle Scholar
  17. 17.
    Freitas AR, Elghaieb H, León-Sampedro R et al (2017) Detection of optrA in the African continent (Tunisia) within a mosaic Enterococcus faecalis plasmid from urban wastewaters. J Antimicrob Chemother 72:3245–3251CrossRefPubMedGoogle Scholar
  18. 18.
    Silveira E, Freitas AR, Antunes P et al (2014) Co-transfer of resistance to high concentrations of copper and first-line antibiotics among Enterococcus from different origins (humans, animals, the environment and foods) and clonal lineages. J Antimicrob Chemother 69:899–906CrossRefPubMedGoogle Scholar
  19. 19.
    Eliopoulos GM, Wennersten C, Zighelboim-Daum S et al (1988) High-level resistance to gentamicin in clinical isolates of Streptococcus (Enterococcus) faecium. Antimicrob Agents Chemother 32(10):1528–1532CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Carlier S, Courvalin P (1990) Emergence of 4′,4″-aminoglycoside Nucleotidyltransferase in enterococci. Antimicrob Agents Chemother 34:1565–1569CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Rice LB, Carias LL, Hutton-Thomas R et al (2001) Penicillin-binding protein 5 and expression of ampicillin resistance in Enterococcus faecium. Antimicrob Agents Chemother 45:1480–1486CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Jacob AE, Hobbs SJ (1974) Conjugal transfer of plasmid-borne multiple antibiotic resistance in Streptococcus faecalis var. zymogenes. J Bacteriol 117(2):360–372PubMedPubMedCentralGoogle Scholar
  23. 23.
    Clewell DB, Tomich PK, Gawron-Burke MC et al (1982) Mapping of Streptococcus faecalis plasmids pAD1 and pAD2 and studies relating to transposition of Tn917. J Bacteriol 152(3):1220–1230PubMedPubMedCentralGoogle Scholar
  24. 24.
    Yagi Y, Clewell DB (1980) Recombination-deficient mutant of Streptococcus faecalis. J Bacteriol 143(2):966–970PubMedPubMedCentralGoogle Scholar
  25. 25.
    Dunny GM, Brown BL, Clewell DB (1978) Induced cell aggregation and mating in Streptococcus faecalis: evidence for a bacterial sex pheromone. Proc Natl Acad Sci U S A 75(7):3479–3483CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Christie PJ, Korman RZ, Zahler SA et al (1987) Two conjugation systems associated with Streptococcus faecalis plasmid pCF10: identification of a conjugative transposon that transfers between S. faecalis and Bacillus subtilis. J Bacteriol 169(6):2529–2536CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Fletcher HM, Marri L, Daneo-Moore L (1989) Transposon-916-like elements in clinical isolates of Enterococcus faecium. J Gen Microbiol 135(11):3067–3077PubMedGoogle Scholar
  28. 28.
    Ike Y, Craig RA, White BA et al (1983) Modification of Streptococcus faecalis sex pheromones after acquisition of plasmid DNA. Proc Natl Acad Sci U S A 80(17):5369–5373CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Novais C, Tedim AP, Lanza VF et al (2016) Co-diversification of Enterococcus faecium Core genomes and PBP5: evidences of pbp5 horizontal transfer. Front Microbiol 7:1581CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Mainardi JL, Legrand R, Arthur M et al (2000) Novel mechanism of β-lactam resistance due to bypass of DD-transpeptidation in Enterococcus faecium. J Biol Chem 275:16490–16496CrossRefPubMedGoogle Scholar
  31. 31.
    Williamson R, le Bouguénec C, Gutmann L et al (1985) One or two low affinity penicillin-binding proteins may be responsible for the range of susceptibility of Enterococcus faecium to benzylpenicillin. J Gen Microbiol 131(8):1933–1940PubMedGoogle Scholar
  32. 32.
    Coque TM, Tomayko JF, Ricke SC et al (1996) Vancomycin-resistant enterococci from nosocomial, community, and animal sources in the United States. Antimicrob Agents Chemother 40(11):2605–2609CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Oliver DR, Brown BL, Clewell DB (1977) Analysis of plasmid deoxyribonucleic acid in a cariogenic strain of Streptococcus faecalis: an approach to identifying genetic determinants on cryptic plasmids. J Bacteriol 130(2):759–765PubMedPubMedCentralGoogle Scholar
  34. 34.
    León-Sampedro R, Novais C, Peixe L et al (2016) Diversity and evolution of the Tn5801-tet(M)-like integrative and conjugative elements among Enterococcus, Streptococcus, and Staphylococcus. Antimicrob Agents Chemother 60:1736–1746CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Herigstad B, Hamilton M, Heersink J (2001) How to optimize the drop plate method for enumerating bacteria. J Microbiol Methods 44(2):121–129CrossRefPubMedGoogle Scholar
  36. 36.
    Bandyopadhyay A, O’Brien S, Frank KL et al (2016) Antagonistic donor density effect conserved in multiple enterococcal conjugative plasmids. Appl Environ Microbial 82:4537–4545CrossRefGoogle Scholar
  37. 37.
    Zhong X, Droesch J, Fox R et al (2012) On the meaning and estimation of plasmid transfer rates for surface-associated and well-mixed bacterial populations. J Theor Biol 294:144–152CrossRefPubMedGoogle Scholar
  38. 38.
    Morroni G, Brenciani A, Litta-Mulondo A et al (2019) Characterization of a new transferable MDR plasmid carrying the pbp5 gene from a clade B commensal Enterococcus faecium. J Antimicrob Chemother.  https://doi.org/10.1093/jac/dky549CrossRefPubMedGoogle Scholar
  39. 39.
    Ike Y, Tanimoto K, Tomita H et al (1998) Efficient transfer of the pheromone-independent Enterococcus faecium plasmid pMG1 (Gmr) (65.1 kilobases) to Enterococcus strains during broth mating. J Bacteriol 180:4886–4892PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Laboratory of Microbiology, Biological Sciences Department, Faculty of Pharmacy, UCIBIO/REQUIMTEUniversity of PortoPortoPortugal
  2. 2.Department of Microbiology, Ramón y Cajal Health Research Institute (IRYCIS), Unidad de Resistencia a Antibióticos y Virulencia Bacteriana (RYC-CSIC), CIBER en Epidemiología y Salud Pública (CIBER-ESP)Ramón y Cajal University HospitalMadridSpain
  3. 3.Department of Microbiology, Ramón y Cajal Research Institute (IRYCIS)MadridSpain
  4. 4.CIBER in Epidemiology and Public Health (CIBERESP)MadridSpain

Personalised recommendations