Skip to main content

Methods to Study Fitness and Compensatory Adaptation in Plasmid-Carrying Bacteria

  • Protocol
  • First Online:
Book cover Horizontal Gene Transfer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2075))

Abstract

Mobile genetic elements such as plasmids mediate horizontal gene transfer in prokaryotes, promoting bacterial adaptation and evolution. Despite the potential advantages conferred by these genetic elements, plasmids can also produce a fitness cost when they arrive to a new host. This initial burden is one of the main limits to the spread of plasmids in bacterial populations. However, plasmid costs can be ameliorated over time through compensatory mutations in the plasmid or the chromosome (compensatory adaptation). Understanding the origin of the cost produced by plasmids and the potential for compensatory adaptation is crucial to predict the spread and evolution of plasmid-mediated traits, such as antibiotic resistance. Here, we describe a simple protocol designed to analyze the fitness effects of a plasmid in a new host bacterium. We also provide a method to examine the potential for compensatory adaptation, using experimental evolution, and to elucidate if compensation originates in the plasmid, the bacterium, or both.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gogarten JP, Townsend JP (2005) Horizontal gene transfer, genome innovation and evolution. Nat Rev Microbiol 3(9):679–687. doi:nrmicro1204. https://doi.org/10.1038/nrmicro1204

    Article  CAS  PubMed  Google Scholar 

  2. O’Neill J (2016) Tackling drug-resistant infections globally: final report and recommendations. Review on antimicrobal resistance

    Google Scholar 

  3. Carattoli A (2013) Plasmids and the spread of resistance. Int J Med Microbiol 303(6–7):298–304. https://doi.org/10.1016/j.ijmm.2013.02.001

    Article  CAS  PubMed  Google Scholar 

  4. Vogwill T, MacLean RC (2015) The genetic basis of the fitness costs of antimicrobial resistance: a meta-analysis approach. Evol Appl 8(3):284–295. https://doi.org/10.1111/eva.12202

    Article  PubMed  Google Scholar 

  5. San Millan A, MacLean RC (2017) Fitness costs of plasmids: a limit to plasmid transmission. Microbiol Spectr 5(5). https://doi.org/10.1128/microbiolspec.MTBP-0016-2017

  6. Baltrus DA (2013) Exploring the costs of horizontal gene transfer. Trends Ecol Evol 28(8):489–495. https://doi.org/10.1016/j.tree.2013.04.002

    Article  PubMed  Google Scholar 

  7. Bouma JE, Lenski RE (1988) Evolution of a bacteria/plasmid association. Nature 335(6188):351–352. https://doi.org/10.1038/335351a0

    Article  CAS  PubMed  Google Scholar 

  8. Harrison E, Brockhurst MA (2012) Plasmid-mediated horizontal gene transfer is a coevolutionary process. Trends Microbiol 20(6):262–267. doi:S0966-842X(12)00066-2. https://doi.org/10.1016/j.tim.2012.04.003

    Article  CAS  PubMed  Google Scholar 

  9. San Millan A, Peña-Miller R, Toll-Riera M, Halbert ZV, McLean AR, Cooper BS, MacLean RC (2014) Positive selection and compensatory adaptation interact to stabilize non-transmissible plasmids. Nat Commun 5:5208. https://doi.org/10.1038/ncomms6208

    Article  CAS  PubMed  Google Scholar 

  10. Harrison E, Guymer D, Spiers AJ, Paterson S, Brockhurst MA (2015) Parallel compensatory evolution stabilizes plasmids across the parasitism-mutualism continuum. Curr Biol 25(15):2034–2039. https://doi.org/10.1016/j.cub.2015.06.024

    Article  CAS  PubMed  Google Scholar 

  11. San Millan A, Toll-Riera M, Qi Q, MacLean RC (2015) Interactions between horizontally acquired genes create a fitness cost in Pseudomonas aeruginosa. Nat Commun 6:6845. https://doi.org/10.1038/ncomms7845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Loftie-Eaton W, Yano H, Burleigh S, Simmons RS, Hughes JM, Rogers LM, Hunter SS, Settles ML, Forney LJ, Ponciano JM, Top EM (2016) Evolutionary paths that expand plasmid host-range: implications for spread of antibiotic resistance. Mol Biol Evol 33(4):885–897. https://doi.org/10.1093/molbev/msv339

    Article  CAS  PubMed  Google Scholar 

  13. Porse A, Schonning K, Munck C, Sommer MO (2016) Survival and evolution of a large multidrug resistance plasmid in new clinical bacterial hosts. Mol Biol Evol. https://doi.org/10.1093/molbev/msw163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Loftie-Eaton W, Bashford K, Quinn H, Dong K, Millstein J, Hunter S, Thomason MK, Merrikh H, Ponciano JM, Top EM (2017) Compensatory mutations improve general permissiveness to antibiotic resistance plasmids. Nat Ecol Evol 1(9):1354–1363. https://doi.org/10.1038/s41559-017-0243-2

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bottery MJ, Wood AJ, Brockhurst MA (2017) Adaptive modulation of antibiotic resistance through intragenomic coevolution. Nat Ecol Evol 1(9):1364–1369. https://doi.org/10.1038/s41559-017-0242-3

    Article  PubMed  PubMed Central  Google Scholar 

  16. San Millan A (2018) Evolution of plasmid-mediated antibiotic resistance in the clinical context. Trends Microbiol. https://doi.org/10.1016/j.tim.2018.06.007

    Article  CAS  PubMed  Google Scholar 

  17. San Millan A, Toll-Riera M, Qi Q, Betts A, Hopkinson RJ, McCullagh J, MacLean RC (2018) Integrative analysis of fitness and metabolic effects of plasmids in Pseudomonas aeruginosa PAO1. ISME J. https://doi.org/10.1038/s41396-018-0224-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lenski RE, Rose MR, Simpson SC, Tadler SC (1991) Long-term experimental evolution in Escherichia coli. I. Adaptation and divergence during 2,000 generations. Am Nat 138(6):1315–1341. https://doi.org/10.1086/285289

    Article  Google Scholar 

  19. Shintani M, Takahashi Y, Tokumaru H, Kadota K, Hara H, Miyakoshi M, Naito K, Yamane H, Nishida H, Nojiri H (2010) Response of the Pseudomonas host chromosomal transcriptome to carriage of the IncP-7 plasmid pCAR1. Environ Microbiol 12(6):1413–1426. doi:EMI2110. https://doi.org/10.1111/j.1462-2920.2009.02110.x

    Article  CAS  PubMed  Google Scholar 

  20. Spengler G, Molnar A, Schelz Z, Amaral L, Sharples D, Molnar J (2006) The mechanism of plasmid curing in bacteria. Curr Drug Targets 7(7):823–841

    Article  CAS  PubMed  Google Scholar 

  21. Hale L, Lazos O, Haines A, Thomas C (2010) An efficient stress-free strategy to displace stable bacterial plasmids. BioTechniques 48(3):223–228. https://doi.org/10.2144/000113366

    Article  CAS  PubMed  Google Scholar 

  22. Bikard D, Euler CW, Jiang W, Nussenzweig PM, Goldberg GW, Duportet X, Fischetti VA, Marraffini LA (2014) Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat Biotechnol 32(11):1146–1150. https://doi.org/10.1038/nbt.3043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hall BG, Acar H, Nandipati A, Barlow M (2014) Growth rates made easy. Mol Biol Evol 31(1):232–238. https://doi.org/10.1093/molbev/mst187

    Article  CAS  PubMed  Google Scholar 

  24. Sprouffske K, Wagner A (2016) Growthcurver: an R package for obtaining interpretable metrics from microbial growth curves. BMC Bioinformatics 17:172. https://doi.org/10.1186/s12859-016-1016-7

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ram Y, Dellus-Gur E, Bibi M, Karkare K, Obolski U, Feldman MW, Cooper TF, Berman J, Hadany L (2019) Predicting microbial growth in a mixed culture from growth curve data. Proc Natl Acad Sci U S A 116 (29):14698–14707. https://doi.org/10.1073/pnas.1902217116

    Article  CAS  Google Scholar 

  26. Miller JF (1994) Bacterial transformation by electroporation. Methods Enzymol 235:375–385

    Article  CAS  PubMed  Google Scholar 

  27. Woodall CA (2003) DNA transfer by bacterial conjugation. In: Casali N, Preston A (eds) E. coli plasmid vectors: methods and applications. Humana Press, Totowa, NJ, pp 61–65. https://doi.org/10.1385/1-59259-409-3:61

    Chapter  Google Scholar 

  28. Charlesworth B (2009) Fundamental concepts in genetics: effective population size and patterns of molecular evolution and variation. Nat Rev Genet 10(3):195–205. https://doi.org/10.1038/nrg2526

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Instituto de Salud Carlos III (Plan Estatal de I + D + i 2013–2016)—grants CP15-00012, PI16-00860, and CIBER (CB06/02/0053) actions—and cofinanced by the European Development Regional Fund “A way to achieve Europe” (ERDF) and by the European Research Council under the European Union’s Horizon 2020 research and innovation program (ERC grant agreement no. 757440-PLASREVOLUTION). J.R.B. is a recipient of a Juan de la Cierva Fellowship, Ministerio de Economı́a Industria y Competitividad (FJCI-2016-30019).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

DelaFuente, J., Rodriguez-Beltran, J., San Millan, A. (2020). Methods to Study Fitness and Compensatory Adaptation in Plasmid-Carrying Bacteria. In: de la Cruz, F. (eds) Horizontal Gene Transfer. Methods in Molecular Biology, vol 2075. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9877-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9877-7_26

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9876-0

  • Online ISBN: 978-1-4939-9877-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics