Advertisement

Integron Identification in Bacterial Genomes and Cassette Recombination Assays

  • Claire Vit
  • Céline Loot
  • José Antonio Escudero
  • Aleksandra Nivina
  • Didier MazelEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2075)

Abstract

Integrons are genetic elements involved in bacterial adaptation to the environment. Sedentary chromosomal integrons (SCIs) can stockpile and rearrange a myriad of different functions encoded in gene cassettes. Through their association with transposable elements and conjugative plasmids, some SCIs have acquired mobility and are now termed Mobile Integrons (MIs). MIs have reached the hospitals and are involved in the rise and spread of antibiotic resistance genes through horizontal gene transfer among numerous bacterial species. Here we aimed at describing methods for the detection of integrons in sequenced bacterial genomes as well as for the experimental characterization of the activity of their different components: the integrase and the recombination sites.

Key words

Integron Site-specific recombination Cassette excision and insertion Integrase attC and attI sites Replication 

References

  1. 1.
    Stokes HW, Hall RM (1989) A novel family of potentially mobile DNA elements encoding site-specific gene-integration functions: integrons. Mol Microbiol 3(12):1669–1683CrossRefPubMedGoogle Scholar
  2. 2.
    Fluit AC, Schmitz FJ (2004) Resistance integrons and super-integrons. Clin Microbiol Infect 10(4):272–288CrossRefPubMedGoogle Scholar
  3. 3.
    Partridge SR et al (2009) Gene cassettes and cassette arrays in mobile resistance integrons. FEMS Microbiol Rev 33(4):757–784CrossRefPubMedGoogle Scholar
  4. 4.
    Mazel D (2006) Integrons: agents of bacterial evolution. Nat Rev Microbiol 4(8):608–620CrossRefPubMedGoogle Scholar
  5. 5.
    Rowe-Magnus DA, Guerout AM, Mazel D (2002) Bacterial resistance evolution by recruitment of super-integron gene cassettes. Mol Microbiol 43(6):1657–1669CrossRefPubMedGoogle Scholar
  6. 6.
    Jacquier H et al (2009) Translation regulation of integrons gene cassette expression by the attC sites. Mol Microbiol 72(6):1475–1486CrossRefPubMedGoogle Scholar
  7. 7.
    Cambray G et al (2011) Prevalence of SOS-mediated control of integron integrase expression as an adaptive trait of chromosomal and mobile integrons. Mob DNA 2(1):6CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    MacDonald D et al (2006) Structural basis for broad DNA specificity in integron recombination. Nature 440:1157–1162CrossRefPubMedGoogle Scholar
  9. 9.
    Guerin E et al (2009) The SOS response controls integron recombination. Science 324(5930):1034CrossRefPubMedGoogle Scholar
  10. 10.
    Collis CM et al (1998) Binding of the purified integron DNA integrase Intl1 to integron- and cassette-associated recombination sites. Mol Microbiol 29(2):477–490CrossRefPubMedGoogle Scholar
  11. 11.
    Bouvier M, Demarre G, Mazel D (2005) Integron cassette insertion: a recombination process involving a folded single strand substrate. EMBO J 24(24):4356–4367CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Loot C et al (2010) Cellular pathways controlling integron cassette site folding. EMBO J 29(15):2623–2634CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Loot C et al (2012) Replicative resolution of integron cassette insertion. Nucleic Acids Res 40:8361–8370CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Cury J et al (2016) Identification and analysis of integrons and cassette arrays in bacterial genomes. Nucleic Acids Res 44(10):4539–4550CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Loot C et al (2017) Differences in Integron cassette excision dynamics shape a trade-off between Evolvability and genetic capacitance. MBio 8(2)Google Scholar
  16. 16.
    Demarre G et al (2005) A new family of mobilizable suicide plasmids based on the broad host range R388 plasmid (IncW) or RP4 plasmid (IncPα) conjugative machineries and their cognate E. coli host strains. Res Microbiol 156(2):245–255CrossRefPubMedGoogle Scholar
  17. 17.
    Bouvier M et al (2009) Structural features of single-stranded integron cassette attC sites and their role in strand selection. PLoS Genet 5(9):e1000632CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Baharoglu Z, Bikard D, Mazel D (2010) Conjugative DNA transfer induces the bacterial SOS response and promotes antibiotic resistance development through integron activation. PLoS Genet 6(10):e1001165CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Escudero JA et al (2016) Unmasking the ancestral activity of integron integrases reveals a smooth evolutionary transition during functional innovation. Nat Commun 7:10937CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Demarre G et al (2007) Identification of key structural determinants of the IntI1 integron integrase that influence attC x attI1 recombination efficiency. Nucleic Acids Res 35(19):6475–6489CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Biskri L et al (2005) Comparative study of class 1 integron and Vibrio cholerae superintegron integrase activities. J Bacteriol 187(5):1740–1750CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Martinez E, de la Cruz F (1990) Genetic elements involved in Tn21 site-specific integration, a novel mechanism for the dissemination of antibiotic resistance genes. EMBO J 9:1275–1281CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Parsot C (1986) Evolution of biosynthetic pathways: a common ancestor for threonine synthase, threonine dehydratase and D-serine dehydratase. EMBO J 5(11):3013–3019CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Lorenz R et al (2011) ViennaRNA Package 2.0. Algorithm Mol Biol 6:26CrossRefGoogle Scholar
  25. 25.
    Mathews DH et al (2004) Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc Natl Acad Sci U S A 101(19):7287–7292CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Claire Vit
    • 1
    • 2
    • 3
  • Céline Loot
    • 1
    • 2
  • José Antonio Escudero
    • 1
    • 2
  • Aleksandra Nivina
    • 1
    • 2
    • 4
  • Didier Mazel
    • 1
    • 2
    Email author
  1. 1.Unité Plasticité du Génome Bactérien, Département Génomes et GénétiqueInstitut PasteurParisFrance
  2. 2.CNRS, UMR3525ParisFrance
  3. 3.Sorbonne Université, Collège doctoralParisFrance
  4. 4.Paris Descartes, Sorbonne Paris CitéParisFrance

Personalised recommendations