Native Protein Mass Spectrometry

  • Timothy M. AllisonEmail author
  • Mark T. Agasid
Part of the Methods in Molecular Biology book series (MIMB, volume 2073)


In native mass spectrometry, non-covalent interactions are preserved in solution and through transfer to the gas phase. This technique can be used to characterize the composition, stoichiometry, and architecture of protein nano-assemblies, such as those observed in vivo or constructed through protein engineering in nanotechnology and synthetic biology. Here we describe an implementation of native mass spectrometry for studying protein-based nanostructures, including membrane proteins. Unambiguous structural details of assemblies can be rapidly determined due to the high resolution and mass accuracy afforded by mass spectrometry measurements including protein nano-assembly stoichiometry, heterogeneity, and ligand binding characteristics.

Key words

Native mass spectrometry Proteins Membrane proteins Protein nanotechnology 


  1. 1.
    Leney AC, Heck AJR (2017) Native mass spectrometry: what is in the name? J Am Soc Mass Spectrom 28(1):5–13PubMedCrossRefGoogle Scholar
  2. 2.
    Karas M, Bahr U, Dülcks T (2000) Nano-electrospray ionization mass spectrometry: addressing analytical problems beyond routine. Fresenius J Anal Chem 366(6):669–676PubMedCrossRefGoogle Scholar
  3. 3.
    Benesch JLP (2009) Collisional activation of protein complexes: picking up the pieces. J Am Soc Mass Spectrom 20(3):341PubMedCrossRefGoogle Scholar
  4. 4.
    O’Brien JP, Li W, Zhang Y, Brodbelt JS (2014) Characterization of native protein complexes using ultraviolet photodissociation mass spectrometry. J Am Chem Soc 136(37):12920–12928PubMedCrossRefGoogle Scholar
  5. 5.
    Zhou M, Wysocki VH (2014) Surface induced dissociation: dissecting noncovalent protein complexes in the gas phase. Acc Chem Res 47(4):1010–1018PubMedCrossRefGoogle Scholar
  6. 6.
    Zhang H, Cui W, Gross ML, Blankenship RE (2013) Native mass spectrometry of photosynthetic pigment–protein complexes. FEBS Lett 587(8):1012–1020PubMedCrossRefGoogle Scholar
  7. 7.
    Lermyte F, Konijnenberg A, Williams JP, Brown JM, Valkenborg D, Sobott F (2014) ETD allows for native surface mapping of a 150 kDa noncovalent complex on a commercial Q-TWIMS-TOF instrument. J Am Soc Mass Spectrom 25(3):343–350PubMedCrossRefGoogle Scholar
  8. 8.
    Liko I, Allison TM, Hopper JTS, Robinson CV (2016) Mass spectrometry guided structural biology. Curr Opin Struct Biol 40(Suppl C):136–144PubMedCrossRefGoogle Scholar
  9. 9.
    Lai Y-T, Reading E, Hura GL, Tsai K-L, Laganowsky A, Asturias FJ, Tainer JA, Robinson CV, Yeates TO (2014) Structure of a designed protein cage that self-assembles into a highly porous cube. Nat Chem 6:1065PubMedCrossRefGoogle Scholar
  10. 10.
    Sciore A, Su M, Koldewey P, Eschweiler JD, Diffley KA, Linhares BM, Ruotolo BT, Bardwell JCA, Skiniotis G, Marsh ENG (2016) Flexible, symmetry-directed approach to assembling protein cages. Proc Natl Acad Sci 113(31):8681–8686PubMedCrossRefGoogle Scholar
  11. 11.
    Sahasrabuddhe A, Hsia Y, Busch F, Sheffler W, King NP, Baker D, Wysocki VH (2018) Confirmation of inter-subunit connectivity and topology of designed protein complexes by native mass spectrometry. Proc Natl Acad Sci U S A 115(6):1268–1273PubMedCrossRefGoogle Scholar
  12. 12.
    Cubrilovic D, Haap W, Barylyuk K, Ruf A, Badertscher M, Gubler M, Tetaz T, Joseph C, Benz J, Zenobi R (2014) Determination of protein–ligand binding constants of a cooperatively regulated tetrameric enzyme using electrospray mass spectrometry. ACS Chem Biol 9(1):218–226PubMedCrossRefGoogle Scholar
  13. 13.
    Ishii K, Noda M, Uchiyama S (2016) Mass spectrometric analysis of protein–ligand interactions. Biophys Physicobiol 13:87–95PubMedCrossRefGoogle Scholar
  14. 14.
    Sobott F, Hernandez H, McCammon MG, Tito MA, Robinson CV (2002) A tandem mass spectrometer for improved transmission and analysis of large macromolecular assemblies. Anal Chem 74(6):1402–1407PubMedCrossRefGoogle Scholar
  15. 15.
    van de Waterbeemd M, Fort KL, Boll D, Reinhardt-Szyba M, Routh A, Makarov A, Heck AJR (2017) High-fidelity mass analysis unveils heterogeneity in intact ribosomal particles. Nat Methods 14:283PubMedCrossRefGoogle Scholar
  16. 16.
    Konermann L (2017) Addressing a common misconception: ammonium acetate as neutral pH “buffer” for native electrospray mass spectrometry. J Am Soc Mass Spectrom 28(9):1827–1835PubMedCrossRefGoogle Scholar
  17. 17.
    Hernandez H, Robinson CV (2007) Determining the stoichiometry and interactions of macromolecular assemblies from mass spectrometry. Nat Protoc 2(3):715–726PubMedCrossRefGoogle Scholar
  18. 18.
    McKay AR, Ruotolo BT, Ilag LL, Robinson CV (2006) Mass measurements of increased accuracy resolve heterogeneous populations of intact ribosomes. J Am Chem Soc 128(35):11433–11442PubMedCrossRefGoogle Scholar
  19. 19.
    Laganowsky A, Reading E, Hopper JT, Robinson CV (2013) Mass spectrometry of intact membrane protein complexes. Nat Protoc 8(4):639–651PubMedCrossRefGoogle Scholar
  20. 20.
    Reading E, Liko I, Allison TM, Benesch JLP, Laganowsky A, Robinson CV (2015) The role of the detergent Micelle in preserving the structure of membrane proteins in the gas phase. Angew Chem Int Ed 54(15):4577–4581CrossRefGoogle Scholar
  21. 21.
    Laganowsky A, Reading E, Allison TM, Ulmschneider MB, Degiacomi MT, Baldwin AJ, Robinson CV (2014) Membrane proteins bind lipids selectively to modulate their structure and function. Nature 510(7503):172–175PubMedCrossRefGoogle Scholar
  22. 22.
    Kirshenbaum N, Michaelevski I, Sharon M (2010) Analyzing large protein complexes by structural mass spectrometry. J Vis Exp 40:e1954Google Scholar
  23. 23.
    Fong KWY, Chan TWD (1999) A novel nonmetallized tip for electrospray mass spectrometry at nanoliter flow rate. J Am Soc Mass Spectrom 10(1):72–75PubMedCrossRefGoogle Scholar
  24. 24.
    Marty MT, Baldwin AJ, Marklund EG, Hochberg GKA, Benesch JLP, Robinson CV (2015) Bayesian deconvolution of mass and ion mobility spectra: from binary interactions to polydisperse ensembles. Anal Chem 87(8):4370–4376PubMedCrossRefGoogle Scholar
  25. 25.
    Liko I, Hopper JTS, Allison TM, Benesch JLP, Robinson CV (2016) Negative ions enhance survival of membrane protein complexes. J Am Soc Mass Spectrom 27(6):1099–1104PubMedCrossRefGoogle Scholar
  26. 26.
    Yen H-Y, Hopper JTS, Liko I, Allison TM, Zhu Y, Wang D, Stegmann M, Mohammed S, Wu B, Robinson CV (2017) Ligand binding to a G protein–coupled receptor captured in a mass spectrometer. Sci Adv 3(6):e1701016PubMedCrossRefGoogle Scholar
  27. 27.
    Mehmood S, Corradi V, Choudhury HG, Hussain R, Becker P, Axford D, Zirah S, Rebuffat S, Tieleman DP, Robinson CV, Beis K (2016) Structural and functional basis for lipid synergy on the activity of the antibacterial peptide ABC transporter McjD. J Biol Chem 291(41):21656–21668PubMedCrossRefGoogle Scholar
  28. 28.
    Mehmood S, Marcoux J, Gault J, Quigley A, Michaelis S, Young SG, Carpenter EP, Robinson CV (2016) Mass spectrometry captures off-target drug binding and provides mechanistic insights into the human metalloprotease ZMPSTE24. Nat Chem 8:1152PubMedCrossRefGoogle Scholar
  29. 29.
    Landreh M, Liko I, Uzdavinys P, Coincon M, Hopper JTS, Drew D, Robinson CV (2015) Controlling release, unfolding and dissociation of membrane protein complexes in the gas phase through collisional cooling. Chem Commun 51(85):15582–15584CrossRefGoogle Scholar
  30. 30.
    Hopper JT, Yu YT, Li D, Raymond A, Bostock M, Liko I, Mikhailov V, Laganowsky A, Benesch JL, Caffrey M, Nietlispach D, Robinson CV (2013) Detergent-free mass spectrometry of membrane protein complexes. Nat Methods 10(12):1206–1208PubMedCrossRefGoogle Scholar
  31. 31.
    Ruotolo BT, Benesch JL, Sandercock AM, Hyung SJ, Robinson CV (2008) Ion mobility-mass spectrometry analysis of large protein complexes. Nat Protoc 3(7):1139–1152PubMedCrossRefGoogle Scholar
  32. 32.
    Juraschek R, Dülcks T, Karas M (1999) Nanoelectrospray—more than just a minimized-flow electrospray ionization source. J Am Soc Mass Spectrom 10(4):300–308PubMedCrossRefGoogle Scholar
  33. 33.
    Susa AC, Xia Z, Williams ER (2017) Small emitter tips for native mass spectrometry of proteins and protein complexes from nonvolatile buffers that mimic the intracellular environment. Anal Chem 89(5):3116–3122PubMedCrossRefGoogle Scholar
  34. 34.
    Chernushevich IV, Bahr U, Karas M (2004) Nanospray ‘taxation’ and how to avoid it. Rapid Commun Mass Spectrom 18(20):2479–2485PubMedCrossRefGoogle Scholar
  35. 35.
    Mortensen DN, Williams ER (2016) Surface-induced protein unfolding in submicron electrospray emitters. Anal Chem 88(19):9662–9668PubMedCrossRefGoogle Scholar
  36. 36.
    Testa L, Brocca S, Grandori R (2011) Charge-surface correlation in electrospray ionization of folded and unfolded proteins. Anal Chem 83(17):6459–6463PubMedCrossRefGoogle Scholar
  37. 37.
    Konermann L, Ahadi E, Rodriguez AD, Vahidi S (2013) Unraveling the mechanism of electrospray ionization. Anal Chem 85(1):2–9PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.School of Physical and Chemical SciencesUniversity of CanterburyChristchurchNew Zealand
  2. 2.Physical and Theoretical Chemistry LaboratoryUniversity of OxfordOxfordUK

Personalised recommendations