Advertisement

Generation of High-Affinity Molecularly Imprinted Nanoparticles for Protein Recognition via a Solid-Phase Synthesis Protocol

  • Francesco Canfarotta
  • Sergey A. Piletsky
  • Nicholas W. TurnerEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2073)

Abstract

Molecularly imprinted polymers are leading technology in the development of protein biomimetics. This chapter describes the protocol for the synthesis of protein imprinted nanoparticles. These materials exhibit exceptional affinity (into the nM/pM range) and selectivity for their target template. The nanoparticles can be developed for a wide range of targets, while exhibiting excellent robustness, solubility, and flexibility in use. They are finding use in the creation of drug delivery vectors and sensing and recognition assays.

Key words

Molecular imprinting MIPs Nanoparticle synthesis Molecular recognition Epitope recognition Biomimetic 

References

  1. 1.
    Czyzewski AM, Barron AE (2008) Protein and peptide biomimicry: gold-mining inspiration from nature’s ingenuity. AICHE J 54(1):2–8CrossRefGoogle Scholar
  2. 2.
    Nagpal K, Mohan A, Thakur S, Kumar P (2018) Dendritic platforms for biomimicry and biotechnological applications. Artif Cells Nanomed Biotechnol 46:861–875CrossRefGoogle Scholar
  3. 3.
    Webber MJ, Appel EA, Meijer EW, Langer R (2015) Supramolecular biomaterials. Nat Mater 15:13CrossRefGoogle Scholar
  4. 4.
    Alexander C, Andersson HS, Andersson LI, Ansell RJ, Kirsch N, Nicholls IA, O’Mahony J, Whitcombe M (2006) Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003. J Mol Recognit 19(2):106–180CrossRefGoogle Scholar
  5. 5.
    Whitcombe MJ, Kirsch N, Nicholls IA (2014) Molecular imprinting science and technology: a survey of the literature for the years 2004–2011. J Mol Recognit 27(6):297–401CrossRefGoogle Scholar
  6. 6.
    Nicholls IA (1995) Thermodynamic considerations for the design of and ligand recognition by molecularly imprinted polymers. Chem Lett 24:1035–1036CrossRefGoogle Scholar
  7. 7.
    Nicholls IA, Andersson HS, Charlton C, Henschel H, Karlsson BCG, Karlsson JG, O’Mahony J, Rosengren AM, Rosengren KJ, Wikman S (2009) Theoretical and computational strategies for rational molecularly imprinted polymer design. Biosens Bioelectron 25(3):543–542CrossRefGoogle Scholar
  8. 8.
    Chianella I, Lotierzo M, Piletsky SA, Tothill IE, Chen B, Karim K, Turner APF (2002) Rational design of a polymer specific for microcystin-LR using a computational approach. Anal Chem 74(6):1288–1293CrossRefGoogle Scholar
  9. 9.
    Jalink T, Farrand T, Herdes C (2016) Towards EMIC rational design: setting the molecular simulation toolbox for enantiopure molecularly imprinted catalysts. Chem Cent J 10(1):66CrossRefGoogle Scholar
  10. 10.
    Piletsky SA, Piletska EV, Karim K, Freebairn KW, Legge CH, Turner APF (2002) Polymer cookery: influence of polymerization conditions on the performance of molecularly imprinted polymers. Macromolecules 35:7499–7504CrossRefGoogle Scholar
  11. 11.
    Piletsky SA, Guerreiro A, Piletska EV, Chianella I, Karim K, Turner APF (2004) Polymer cookery. 2. Influence of polymerization pressure and polymer swelling on the performance of molecularly imprinted polymers. Macromolecules 37:5018–5022CrossRefGoogle Scholar
  12. 12.
    Piletsky SA, Mijangos I, Guerreiro A, Piletska EV, Chianella I, Karim K, Turner APF (2005) Polymer cookery 3: influence of polymerization time and different initiation conditions on performance of molecularly imprinted polymers. Macromolecules 38:1410–1414CrossRefGoogle Scholar
  13. 13.
    Wackerlig J, Lieberzeit PA (2015) Molecularly imprinted polymer nanoparticles in chemical sensing – synthesis, characterisation and application. Sensors Actuators B Chem 207:144–157CrossRefGoogle Scholar
  14. 14.
    Boysen RI, Schwarz LJ, Nicolau DV, Hearn MTW (2017) Molecularly imprinted polymer membranes and thin films for the separation and sensing of biomacromolecules. J Sep Sci 40(1):314–335CrossRefGoogle Scholar
  15. 15.
    Turner NW, Jeans CW, Brain KR, Allender CJ, Hlady VH, Britt DW (2006) From 3D to 2D: a review of the molecular imprinting of proteins. Biotechnol Prog 22:1474–1489CrossRefGoogle Scholar
  16. 16.
    Eersels K, Lieberzeit P, Wagner P (2016) A review on synthetic receptors for bioparticle detection created by surface-imprinting techniques—from principles to applications. ACS Sensors 1(10):1171–1187CrossRefGoogle Scholar
  17. 17.
    Wackerlig J, Schirhagl R (2016) Applications of molecularly imprinted polymer nanoparticles and their advances toward industrial use: a review. Anal Chem 88(1):250–261CrossRefGoogle Scholar
  18. 18.
    Dai H, Xiao D, He H, Li H, Yuan D, Zhang C (2015) Synthesis and analytical applications of molecularly imprinted polymers on the surface of carbon nanotubes: a review. Microchim Acta 182(5):893–908CrossRefGoogle Scholar
  19. 19.
    Garcia Y, Smolinska-Kempisty K, Pereira E, Piletska E, Piletsky S (2017) Development of competitive ‘pseudo’-ELISA assay for measurement of cocaine and its metabolites using molecularly imprinted polymer nanoparticles. Anal Methods 9(31):4592–4598CrossRefGoogle Scholar
  20. 20.
    Korposh S, Chianella I, Guerreiro A, Caygill S, Piletsky S, James SW, Tatam RP (2014) Selective vancomycin detection using optical fibre long period gratings functionalised with molecularly imprinted polymer nanoparticles. Analyst 139(9):2229–2236CrossRefGoogle Scholar
  21. 21.
    Canfarotta F, Rapini R, Piletsky S (2018) Recent advances in electrochemical sensors based on chiral and nano-sized imprinted polymers. Curr Opin Electrochem 7:146–152CrossRefGoogle Scholar
  22. 22.
    Smolinska-Kempisty K, Guerreiro A, Canfarotta F, Cáceres C, Whitcombe MJ, Piletsky S (2016) A comparison of the performance of molecularly imprinted polymer nanoparticles for small molecule targets and antibodies in the ELISA format. Sci Rep 6:37638CrossRefGoogle Scholar
  23. 23.
    Canfarotta F, Whitcombe MJ, Piletsky SA (2013) Polymeric nanoparticles for optical sensing. Biotechnol Adv 31(8):1585–1599CrossRefGoogle Scholar
  24. 24.
    Cecchini A, Raffa V, Canfarotta F, Signore G, Piletsky S, MacDonald MP, Cuschieri A (2017) In vivo recognition of human vascular endothelial growth factor by molecularly imprinted polymers. Nano Lett 17(4):2307–2312CrossRefGoogle Scholar
  25. 25.
    Gagliardi M, Mazzolai B (2015) Molecularly imprinted polymeric micro- and nano-particles for the targeted delivery of active molecules. Future Med Chem 7(2):123–138CrossRefGoogle Scholar
  26. 26.
    Piletsky SA, Piletska E, Canfarotta F, Karim K, Jones D, Norman R, Guerreiro A (2017) Methods and kits for determining binding sites. GB Patent GB1704823.2Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Francesco Canfarotta
    • 1
  • Sergey A. Piletsky
    • 1
  • Nicholas W. Turner
    • 2
    Email author
  1. 1.Department of ChemistryUniversity of LeicesterLeicesterUK
  2. 2.School of PharmacyDe Montfort UniversityLeicesterUK

Personalised recommendations