Advertisement

High-Throughput Measurement of Microneme Secretion in Toxoplasma gondii

  • Kevin M. Brown
  • L. David Sibley
  • Sebastian LouridoEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2071)

Abstract

Micronemes are specialized secretory organelles present in all motile forms of apicomplexan parasites. Microneme vesicles hold adhesins and other proteins that are secreted to facilitate parasite attachment, invasion of host cells, and egress following replication—all processes indispensable for cell-to-cell transmission of these obligate intracellular parasites. Defining the signaling pathways that lead to microneme secretion is an important part of understanding the infectious cycle of apicomplexan parasites. However, the classical method of measuring microneme secretion by immunoblotting for microneme proteins in parasite excreted/secreted antigen (ESA) preparations is low-throughput and only semiquantitative. We recently reported a new luciferase-based method for measuring microneme secretion in a 96-well format with high sensitivity in the model apicomplexan Toxoplasma gondii. Here, we aim to elaborate on this detection method and review current practices for stimulating microneme secretion in vitro.

Key words

Microneme secretion Luciferase Reporter Toxoplasma gondii 

Notes

Acknowledgments

Work in the authors’ labs was supported by an AHA grant 15POST22130001 to KMB, NIH grants AI118426 and AI034036 to LDS, and 1DP5OD017892 and 1R21AI123746 to SL.

References

  1. 1.
    Carruthers VB, Tomley FM (2008) Microneme proteins in apicomplexans. Subcell Biochem 47:33–45CrossRefGoogle Scholar
  2. 2.
    Carruthers VB, Sibley LD (1999) Mobilization of intracellular calcium stimulates microneme discharge in Toxoplasma gondii. Mol Microbiol 31:421–428CrossRefGoogle Scholar
  3. 3.
    Carruthers VB, Moreno SNJ, Sibley LD (1999) Ethanol and acetaldehyde elevate intracellular [Ca2+] calcium and stimulate microneme discharge in Toxoplasma gondii. Biochem J 342:379–386CrossRefGoogle Scholar
  4. 4.
    Lovett JL, Marchesini N, Moreno SN, Sibley LD (2002) Toxoplasma gondii microneme secretion involves intracellular Ca2+ release from IP3 /ryanodine sensitive stores. J Biol Chem 277(29):25870–25876CrossRefGoogle Scholar
  5. 5.
    Pace DA, McKnight CA, Liu J, Jimenez V, Moreno SN (2014) Calcium entry in Toxoplasma gondii and its enhancing effect of invasion-linked traits. J Biol Chem 289(28):19637–19647.  https://doi.org/10.1074/jbc.M114.565390CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Lourido S, Shuman J, Zhang C, Shokat KM, Hui R, Sibley LD (2010) Calcium-dependent protein kinase 1 is an essential regulator of exocytosis in Toxoplasma. Nature 465:359–362CrossRefGoogle Scholar
  7. 7.
    Farrell A, Thirugnanam S, Lorestani A, Dvorin JD, Eidell KP, Ferguson DJ, Anderson-White BR, Duraisingh MT, Marth GT, Gubbels MJ (2012) A DOC2 protein identified by mutational profiling is essential for apicomplexan parasite exocytosis. Science 335((6065)):218–221.  https://doi.org/10.1126/science.1210829CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Brown KM, Lourido S, Sibley LD (2016) Serum albumin stimulates protein kinase G-dependent microneme secretion in Toxoplasma gondii. J Biol Chem 291(18):9554–9565.  https://doi.org/10.1074/jbc.M115.700518CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Sidik SM, Hortua Triana MA, Paul AS, El Bakkouri M, Hackett CG, Tran F, Westwood NJ, Hui R, Zuercher WJ, Duraisingh MT, Moreno SN, Lourido S (2016) Using a genetically encoded sensor to identify inhibitors of Toxoplasma gondii Ca2+ signaling. J Biol Chem 291(18):9566–9580.  https://doi.org/10.1074/jbc.M115.703546CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Brown KM, Long S, Sibley LD (2017) Plasma membrane association by N-acylation governs PKG function in Toxoplasma gondii. MBio 8(3).  https://doi.org/10.1128/mBio.00375-17
  11. 11.
    Howard BL, Harvey KL, Stewart RJ, Azevedo MF, Crabb BS, Jennings IG, Sanders PR, Manallack DT, Thompson PE, Tonkin CJ, Gilson PR (2015) Identification of potent phosphodiesterase inhibitors that demonstrate cyclic nucleotide-dependent functions in apicomplexan parasites. ACS Chem Biol 10(4):1145–1154.  https://doi.org/10.1021/cb501004qCrossRefPubMedGoogle Scholar
  12. 12.
    Stewart RJ, Whitehead L, Nijagal B, Sleebs BE, Lessene G, McConville MJ, Rogers KL, Tonkin CJ (2017) Analysis of Ca(2)(+) mediated signaling regulating Toxoplasma infectivity reveals complex relationships between key molecules. Cell Microbiol 19(4).  https://doi.org/10.1111/cmi.12685CrossRefGoogle Scholar
  13. 13.
    Bullen HE, Jia Y, Yamaryo-Botte Y, Bisio H, Zhang O, Jemelin NK, Marq JB, Carruthers V, Botte CY, Soldati-Favre D (2016) Phosphatidic acid-mediated signaling regulates microneme secretion in Toxoplasma. Cell Host Microbe 19(3):349–360.  https://doi.org/10.1016/j.chom.2016.02.006CrossRefGoogle Scholar
  14. 14.
    Barragan A, Brossier F, Sibley LD (2005) Transepithelial migration of Toxoplasma gondii involves an interaction of intercellular adhesion molecule 1 (ICAM-1) with the parasite adhesin MIC2. Cell Microbiol 7(4):561–568.  https://doi.org/10.1111/j.1462-5822.2005.00486.xCrossRefPubMedGoogle Scholar
  15. 15.
    Lourenco EV, Pereira SR, Faca VM, Coelho-Castelo AA, Mineo JR, Roque-Barreira MC, Greene LJ, Panunto-Castelo A (2001) Toxoplasma gondii micronemal protein MIC1 is a lactose-binding lectin. Glycobiology 11(7):541–547CrossRefGoogle Scholar
  16. 16.
    Marchant J, Cowper B, Liu Y, Lai L, Pinzan C, Marq JB, Friedrich N, Sawmynaden K, Liew L, Chai W, Childs RA, Saouros S, Simpson P, Roque Barreira MC, Feizi T, Soldati-Favre D, Matthews S (2012) Galactose recognition by the apicomplexan parasite Toxoplasma gondii. J Biol Chem 287(20):16720–16733.  https://doi.org/10.1074/jbc.M111.325928CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Jacot D, Tosetti N, Pires I, Stock J, Graindorge A, Hung YF, Han H, Tewari R, Kursula I, Soldati-Favre D (2016) An apicomplexan actin-binding protein serves as a connector and lipid sensor to coordinate motility and invasion. Cell Host Microbe 20(6):731–743.  https://doi.org/10.1016/j.chom.2016.10.020CrossRefPubMedGoogle Scholar
  18. 18.
    Frenal K, Dubremetz JF, Lebrun M, Soldati-Favre D (2017) Gliding motility powers invasion and egress in Apicomplexa. Nat Rev Microbiol 15(11):645–660.  https://doi.org/10.1038/nrmicro.2017.86CrossRefPubMedGoogle Scholar
  19. 19.
    Shen B, Brown K, Long S, Sibley LD (2017) Development of CRISPR/Cas9 for efficient genome editing in Toxoplasma gondii. Methods Mol Biol 1498:79–103.  https://doi.org/10.1007/978-1-4939-6472-7_6CrossRefPubMedGoogle Scholar
  20. 20.
    Krishnamurthy S, Deng B, Del Rio R, Buchholz KR, Treeck M, Urban S, Boothroyd J, Lam YW, Ward GE (2016) Not a simple tether: binding of Toxoplasma gondii AMA1 to RON2 during invasion protects ama1 from rhomboid-mediated cleavage and leads to dephosphorylation of its cytosolic tail. MBio 7(5).  https://doi.org/10.1128/mBio.00754-16
  21. 21.
    Wan KL, Carruthers VB, Sibley LD, Ajioka JW (1997) Molecular characterisation of an expressed sequence tag locus of Toxoplasma gondii encoding the micronemal protein MIC2. Mol Biochem Parasitol 84(2):203–214CrossRefGoogle Scholar
  22. 22.
    Kafsack BF, Pena JD, Coppens I, Ravindran S, Boothroyd JC, Carruthers VB (2009) Rapid membrane disruption by a perforin-like protein facilitates parasite exit from host cells. Science 323(5913):530–533.  https://doi.org/10.1126/science.1165740CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kremer K, Kamin D, Rittweger E, Wilkes J, Flammer H, Mahler S, Heng J, Tonkin CJ, Langsley G, Hell SW, Carruthers VB, Ferguson DJ, Meissner M (2013) An overexpression screen of Toxoplasma gondii Rab-GTPases reveals distinct transport routes to the micronemes. PLoS Pathog 9(3):e1003213.  https://doi.org/10.1371/journal.ppat.1003213CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Tannous BA, Kim DE, Fernandez JL, Weissleder R, Breakefield XO (2005) Codon-optimized Gaussia luciferase cDNA for mammalian gene expression in culture and in vivo. Mol Ther 11(3):435–443.  https://doi.org/10.1016/j.ymthe.2004.10.016CrossRefPubMedGoogle Scholar
  25. 25.
    Huynh MH, Carruthers VB (2009) Tagging of endogenous genes in a Toxoplasma gondii strain lacking Ku80. Eukaryot Cell 8(4):530–539CrossRefGoogle Scholar
  26. 26.
    Roos DS, Donald RGK, Morrissette NS, Moulton AL (1994) Molecular tools for genetic dissection of the protozoan parasite Toxoplasma gondii. Methods Cell Biol 45:28–61Google Scholar
  27. 27.
    Long S, Brown KM, Drewry LL, Anthony B, Phan IQH, Sibley LD (2017) Calmodulin-like proteins localized to the conoid regulate motility and cell invasion by Toxoplasma gondii. PLoS Pathog 13(5):e1006379.  https://doi.org/10.1371/journal.ppat.1006379CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Lourido S, Moreno SN (2015) The calcium signaling toolkit of the Apicomplexan parasites Toxoplasma gondii and Plasmodium spp. Cell Calcium 57(3):186–193.  https://doi.org/10.1016/j.ceca.2014.12.010CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Kevin M. Brown
    • 1
    • 4
  • L. David Sibley
    • 4
  • Sebastian Lourido
    • 2
    • 3
    Email author
  1. 1.Department of Microbiology and ImmunologyUniversity of Oklahoma Health Sciences CenterOklahoma CityUSA
  2. 2.Whitehead Institute for Biomedical ResearchCambridgeUSA
  3. 3.Biology DepartmentMassachusetts Institute of TechnologyCambridgeUSA
  4. 4.Department of Molecular MicrobiologyWashington University School of MedicineSt. LouisUSA

Personalised recommendations