Advertisement

PCR Screening of Toxoplasma gondii Single Clones Directly from 96-Well Plates Without DNA Purification

  • Federica Piro
  • Vern B. Carruthers
  • Manlio Di CristinaEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2071)

Abstract

Toxoplasma gondii has become a model for studying the phylum Apicomplexa, and more in general parasite-host interactions, thanks to its ease of growth in culture and availability of a broad array of genetics tools. Assigning gene function typically involves genetic techniques such as gene knockout, conditional expression, or protein tagging. These approaches generally require isolation of single clones that have correctly introduced the desired genetic modification into the target genomic locus. The frequency of positive clones carrying these genetic manipulations depends on the particular parasite strain and the impact that these genome modifications have on parasite fitness. An adverse effect on parasite viability or growth would result in a low abundancy of the correct transgenic parasites within the transfected population. This in turn will account for a low rate of positive clones after population cloning, requiring the genetic analysis of a high number of single clones. We have developed a simple and fast method to screen single clones of T. gondii directly from the 96-well plates without previous parasite expansion or time-consuming genomic extraction. This approach permits screening at an earlier point than previously possible, thus allowing for faster movement toward assessing gene function.

Key words

Toxoplasma gondii Parasite cloning PCR screening Phire Hot Start II DNA Polymerase 

Notes

Acknowledgments

Financial Support: This work was supported by the U.S. National Institutes of Health (V.B.C. and M.D.C., grant number R01AI120607) and DCBB, University of Perugia, Italy, project FRB_2014.

References

  1. 1.
    Di Cristina M, Carruthers VB (2018) New and emerging uses of CRISPR/Cas9 to genetically manipulate apicomplexan parasites. Parasitology 145(9):1119–1126CrossRefGoogle Scholar
  2. 2.
    Shen B, Brown K, Long S, Sibley LD (2017) Development of CRISPR/Cas9 for efficient genome editing in Toxoplasma gondii. Methods Mol Biol (Clifton, NJ) 1498:79–103CrossRefGoogle Scholar
  3. 3.
    Wang JL, Huang SY, Behnke MS, Chen K, Shen B, Zhu XQ (2016a) The past, present, and future of genetic manipulation in Toxoplasma gondii. Trends Parasitol 32:542–553CrossRefGoogle Scholar
  4. 4.
    Roos DS, Donald RG, Morrissette NS, Moulton AL (1994) Molecular tools for genetic dissection of the protozoan parasite Toxoplasma gondii. Methods Cell Biol 45:27–63CrossRefGoogle Scholar
  5. 5.
    Roos DS, Sullivan WJ, Striepen B, BohneWand Donald RG (1997) Tagging genes and trapping promoters in Toxoplasma gondii by insertional mutagenesis. Methods 13:112–122CrossRefGoogle Scholar
  6. 6.
    Soete M, Hettman C, Soldati D (1999) The importance of reverse genetics in determining gene function in apicomplexan parasites. Parasitology 118(suppl):S53–S61CrossRefGoogle Scholar
  7. 7.
    Gajria B, Bahl A, Brestelli J, Dommer J, Fischer S, Gao X, Heiges M, Iodice J, Kissinger JC, Mackey AJ, Pinney DF, Roos DS, Stoeckert CJ Jr, Wang H, Brunk BP (2008) ToxoDB: an integrated Toxoplasma gondii database resource. Nucleic Acids Res 36(Database issue):D553–D556PubMedGoogle Scholar
  8. 8.
    Fox BA, Ristuccia JG, Gigley JP, Bzik DJ (2009) Efficient gene replacements in Toxoplasma gondii strains deficient for nonhomologous end joining. Eukaryot Cell 8(4):520–529CrossRefGoogle Scholar
  9. 9.
    Huynh MH, Carruthers VB (2009) Tagging of endogenous genes in a Toxoplasma gondii strain lacking Ku80. Eukaryot Cell 8(4):530–539CrossRefGoogle Scholar
  10. 10.
    Fox BA, Falla A, Rommereim LM, Tomita T, Gigley JP, Mercier C, Cesbron-Delauw MF, Weiss LM, Bzik DJ (2011) Type II Toxoplasma gondii KU80 knockout strains enable functional analysis of genes required for cyst development and latent infection. Eukaryot Cell 10:1193–1206CrossRefGoogle Scholar
  11. 11.
    Sidik SM, Hackett CG, Tran F, Westwood NJ, Lourido S (2014) Efficient genome engineering of Toxoplasma gondii using CRISPR/Cas9. PLoS One 9(6):e100450CrossRefGoogle Scholar
  12. 12.
    Di Cristina M, Dou Z, Lunghi M, Kannan G, Huynh MH, McGovern OL, Schultz TL, Schultz AJ, Miller AJ, Hayes BM, van der Linden W, Emiliani C, Bogyo M, Besteiro S, Coppens I, Carruthers VB (2017) Toxoplasma depends on lysosomal consumption of autophagosomes for persistent infection. Nat Microbiol 2:17096Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Federica Piro
    • 1
  • Vern B. Carruthers
    • 2
  • Manlio Di Cristina
    • 1
    Email author
  1. 1.Department of Chemistry, Biology, and BiotechnologyUniversity of PerugiaPerugiaItaly
  2. 2.Department of Microbiology and ImmunologyUniversity of Michigan Medical SchoolAnn ArborUSA

Personalised recommendations