Metabolomic Analysis of Toxoplasma gondii Tachyzoites

  • Elizabeth F. B. King
  • Simon A. Cobbold
  • Alessandro D. Uboldi
  • Christopher J. Tonkin
  • Malcolm J. McConvilleEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2071)


This protocol describes the use of 13C-stable isotope labeling, combined with metabolite profiling, to investigate the metabolism of the tachyzoite stage of the protozoan parasite Toxoplasma gondii. T. gondii tachyzoites can infect any nucleated cell in their vertebrate (including human) hosts, and utilize a range of carbon sources that freely permeate across the limiting membrane of the specialized vacuole within which they proliferate. Methods for cultivating tachyzoites in human foreskin fibroblasts and metabolically labeling intracellular and naturally egressed tachyzoites with a range of 13C-labeled carbon sources are described. Parasites are harvested and purified from host metabolites, with rapid metabolic quenching and 13C-enrichment in intracellular polar metabolites quantified by gas chromatography–mass spectrometry (GC-MS) and liquid chromatography–mass spectrometry (LC-MS). The mass isotopomer distribution of key metabolites is determined using DExSI software. This method can be used to measure perturbations in parasite metabolism induced by drug inhibition or genetic manipulation of enzyme levels and is broadly applicable to other cultured or intracellular parasite stages.

Key words

Metabolomics 13C-flux analysis Intracellular pathogen Toxoplasmosis Mass spectrometry 


  1. 1.
    Alday PH, Doggett JS (2017) Drugs in development for toxoplasmosis: advances, challenges, and current status. Drug Des Devel Ther 11:273–293CrossRefGoogle Scholar
  2. 2.
    Gamo F-J (2014) Antimalarial drug resistance: new treatments options for plasmodium. Drug Discov Today Technol 11:81–88CrossRefGoogle Scholar
  3. 3.
    Miyamoto Y, Eckmann L (2015) Drug development against the major diarrhea-causing parasites of the small intestine, cryptosporidium and giardia. Front Microbiol 6:1208CrossRefGoogle Scholar
  4. 4.
    Jang C, Chen L, Rabinowitz JD (2018) Metabolomics and isotope tracing. Cell 173:822–837CrossRefGoogle Scholar
  5. 5.
    Dumas M-E (2012) Metabolome 2.0: quantitative genetics and network biology of metabolic phenotypes. Mol Biosyst 8:2494CrossRefGoogle Scholar
  6. 6.
    Kloehn J, Blume M, Cobbold S et al (2016) Using metabolomics to dissect host–parasite interactions. Curr Opin Microbiol 32:59–65CrossRefGoogle Scholar
  7. 7.
    MacRae JI, Sheiner L, Nahid A et al (2012) Mitochondrial metabolism of glucose and glutamine is required for intracellular growth of Toxoplasma gondii. Cell Host Microbe 12:682–692CrossRefGoogle Scholar
  8. 8.
    Oppenheim RD, Creek DJ, Macrae JI et al (2014) BCKDH: the missing link in apicomplexan mitochondrial metabolism is required for full virulence of Toxoplasma gondii and plasmodium berghei. PLoS Pathog 10:e1004263CrossRefGoogle Scholar
  9. 9.
    Blume M, Nitzsche R, Sternberg U et al (2015) A Toxoplasma gondii gluconeogenic enzyme contributes to robust central carbon metabolism and is essential for replication and virulence. Cell Host Microbe 18:210–220CrossRefGoogle Scholar
  10. 10.
    Dagley MJ, McConville MJ, Wren J (2018) DExSI: a new tool for the rapid quantitation of 13C-labelled metabolites detected by GC-MS. 34:1957–1958Google Scholar
  11. 11.
    Junker BH, Klukas C, Schreiber F VANTED: a system for advanced data analysis and visualization in the context of biological networks. BMC Bioinformatics 7:109Google Scholar
  12. 12.
    Clasquin MF, Melamud E, Rabinowitz JD (2012) LC-MS data processing with MAVEN: a metabolomic analysis and visualization engine. Curr Protoc Bioinforma:1–23Google Scholar
  13. 13.
    Melamud E, Vastag L, Rabinowitz JD (2010) Metabolomic analysis and visualization engine for LC-MS data. Anal Chem 82:9818–9826CrossRefGoogle Scholar
  14. 14.
    Smith CA, O’Maille G, Want EJ et al (2005) METLIN: a metabolite mass spectral database. Ther Drug Monit 27:747–751CrossRefGoogle Scholar
  15. 15.
    Zhu Z-J, Schultz AW, Wang J et al (2013) Liquid chromatography quadrupole time-of-flight mass spectrometry characterization of metabolites guided by the METLIN database. Nat Protoc 8:451–460CrossRefGoogle Scholar
  16. 16.
    Yuan J, Bennett BD, Rabinowitz JD (2008) Kinetic flux profiling for quantitation of cellular metabolic fluxes. Nat Protoc 3:1328–1340CrossRefGoogle Scholar
  17. 17.
    Kell DB, Brown M, Davey HM et al (2005) Metabolic footprinting and systems biology: the medium is the message. Nat Rev Microbiol 3:557–565CrossRefGoogle Scholar
  18. 18.
    Wu L, Chen S x, Jiang X g et al (2012) Separation and purification of Toxoplasma gondii tachyzoites from in vitro and in vivo culture systems. Exp Parasitol 130:91–94CrossRefGoogle Scholar
  19. 19.
    Carey MA, Covelli V, Brown A et al (2018) Influential parameters for the analysis of intracellular parasite metabolomics. 3(2):e00097-18Google Scholar
  20. 20.
    Fang M, Ivanisevic J, Benton HP et al (2015) Thermal degradation of small molecules: a global metabolomic investigation. Anal Chem 87:10935–10941CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Elizabeth F. B. King
    • 1
  • Simon A. Cobbold
    • 1
  • Alessandro D. Uboldi
    • 2
    • 3
  • Christopher J. Tonkin
    • 4
  • Malcolm J. McConville
    • 1
    Email author
  1. 1.Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and BiotechnologyThe University of MelbourneParkvilleAustralia
  2. 2.Division of Infection and ImmunityThe Walter and Eliza Hall Institute of Medical ResearchMelbourneAustralia
  3. 3.Department of Medical BiologyThe University of MelbourneParkvilleAustralia
  4. 4.Division of Infectious Disease and Immune DefenseThe Walter and Eliza Hall Institute of Medical ResearchMelbourneAustralia

Personalised recommendations