Advertisement

Model Systems for Studying Mechanisms of Ocular Toxoplasmosis

  • Justine R. SmithEmail author
  • Liam M. Ashander
  • Yuefang Ma
  • Elise Rochet
  • João M. Furtado
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2071)

Abstract

The most common human disease caused by infection with Toxoplasma gondii is ocular toxoplasmosis, which typically is manifest as recurrent attacks of necrotizing retinal inflammation with subsequent scarring. The multilayered retina contains specialized cell populations, including endothelial cells, epithelial cells, neurons and supporting cells, all of which may be involved in this condition. In vitro investigations of basic mechanisms operating in human ocular toxoplasmosis use cellular and molecular methods that are common to the study of many pathological processes, and the novel aspect of this research is the use of human retinal cell subsets. Most in vivo research on ocular toxoplasmosis is conducted in the laboratory mouse. Experimental models involve local or systemic inoculation of parasites to induce acute disease, or sequential systemic and local parasite inoculations to trigger recurrent disease. We present methods for in vitro and in vivo studies of ocular toxoplasmosis, including dissection of the human eye, and culture and infection of differentiated cell populations from the retina, as well as induction of mouse ocular toxoplasmosis by intraocular, or sequential systemic and intraocular, inoculations, and imaging of toxoplasmic retinal lesions.

Key words

Ocular toxoplasmosis Toxoplasma Eye Retina Human Mouse 

Notes

Acknowledgments

This work was supported in part by the Australian Research Council (FT130101648 to JRS) and the National Health and Medical Research Council (GNT1066235 to JRS).

References

  1. 1.
    Dubey JP (2010) Toxoplasmosis of animals and humans, 2nd edn. CRC Press, Taylor & Francis Group, Boca Raton, FLGoogle Scholar
  2. 2.
    London NJ, Hovakimyan A, Cubillan LD et al (2011) Prevalence, clinical characteristics, and causes of vision loss in patients with ocular toxoplasmosis. Eur J Ophthalmol 21:811–819PubMedCrossRefGoogle Scholar
  3. 3.
    Holland GN (2004) Ocular toxoplasmosis: a global reassessment. Part II: disease manifestations and management. Am J Ophthalmol 137:1–17PubMedPubMedCentralGoogle Scholar
  4. 4.
    Lum F, Jones JL, Holland GN, Liesegang TJ (2005) Survey of ophthalmologists about ocular toxoplasmosis. Am J Ophthalmol 140:724–726PubMedCrossRefGoogle Scholar
  5. 5.
    Holland GN (2003) Ocular toxoplasmosis: a global reassessment. Part I: epidemiology and course of disease. Am J Ophthalmol 136:973–988PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Vallochi AL, Muccioli C, Martins MC et al (2005) The genotype of Toxoplasma gondii strains causing ocular toxoplasmosis in humans in Brazil. Am J Ophthalmol 139:350–351PubMedCrossRefGoogle Scholar
  7. 7.
    Switaj K, Master A, Borkowski PK et al (2006) Association of ocular toxoplasmosis with type I Toxoplasma gondii strains: direct genotyping from peripheral blood samples. J Clin Microbiol 44:4262–4264PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Fekkar A, Ajzenberg D, Bodaghi B et al (2011) Direct genotyping of Toxoplasma gondii in ocular fluid samples from 20 patients with ocular toxoplasmosis: predominance of type II in France. J Clin Microbiol 49:1513–1517PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Herrmann DC, Maksimov P, Hotop A et al (2014) Genotyping of samples from German patients with ocular, cerebral and systemic toxoplasmosis reveals a predominance of Toxoplasma gondii type II. Int J Med Microbiol 304:911–916PubMedCrossRefGoogle Scholar
  10. 10.
    Barragan A, Sibley LD (2003) Migration of Toxoplasma gondii across biological barriers. Trends Microbiol 11:426–430PubMedCrossRefGoogle Scholar
  11. 11.
    Runkle EA, Antonetti DA (2011) The blood-retinal barrier: structure and functional significance. Methods Mol Biol 686:133–148PubMedCrossRefGoogle Scholar
  12. 12.
    Antonetti DA, Klein R, Gardner TW (2012) Diabetic retinopathy. N Engl J Med 366:1227–1239PubMedCrossRefGoogle Scholar
  13. 13.
    Nicholson DH, Wolchok EB (1976) Ocular toxoplasmosis in an adult receiving long-term corticosteroid therapy. Arch Ophthalmol 94:248–254PubMedCrossRefGoogle Scholar
  14. 14.
    Yeo JH, Jakobiec FA, Iwamoto T et al (1983) Opportunistic toxoplasmic retinochoroiditis following chemotherapy for systemic lymphoma. A light and electron microscopic study. Ophthalmology 90:885–898PubMedCrossRefGoogle Scholar
  15. 15.
    Smith JR, Franc DT, Carter NS et al (2004) Susceptibility of retinal vascular endothelium to infection with Toxoplasma gondii tachyzoites. Invest Ophthalmol Vis Sci 45:1157–1161PubMedCrossRefGoogle Scholar
  16. 16.
    Furtado JM, Bharadwaj AS, Ashander LM et al (2012) Migration of Toxoplasma gondii-infected dendritic cells across human retinal vascular endothelium. Invest Ophthalmol Vis Sci 53:6856–6862PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Furtado JM, Bharadwaj AS, Chipps TJ (2012) Toxoplasma gondii tachyzoites cross retinal endothelium assisted by intercellular adhesion molecule-1 in vitro. Immunol Cell Biol 90:912–915PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Masland RH (2012) The neuronal organization of the retina. Neuron 76:266–280PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Vecino E, Rodriguez FD, Ruzafa N et al (2016) Glia-neuron interactions in the mammalian retina. Prog Retin Eye Res 51:1–40PubMedCrossRefGoogle Scholar
  20. 20.
    Strauss O (2005) The retinal pigment epithelium in visual function. Physiol Rev 85:845–881PubMedCrossRefGoogle Scholar
  21. 21.
    Furtado JM, Ashander LM, Mohs K et al (2013) Toxoplasma gondii migration within and infection of human retina. PLoS One 8:e54358PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Frenkel JK (1955) Ocular lesions in hamsters; with chronic Toxoplasma and Besnoitia infection. Am J Ophthalmol 39:203–225PubMedCrossRefGoogle Scholar
  23. 23.
    Hogan MJ (1951) Ocular toxoplasmosis. Columbia University Press, New York, NYGoogle Scholar
  24. 24.
    Nozik RA, O'Connor GR (1968) Experimental toxoplasmic retinochoroiditis. Arch Ophthalmol 79:485–489PubMedCrossRefGoogle Scholar
  25. 25.
    Dukaczewska A, Tedesco R, Liesenfeld O (2015) Experimental models of ocular infection with Toxoplasma gondii. Eur J Microbiol Immunol (Bp) 5:293–305CrossRefGoogle Scholar
  26. 26.
    Provis JM, Dubis AM, Maddess T, Carroll J (2013) Adaptation of the central retina for high acuity vision: cones, the fovea and the avascular zone. Prog Retin Eye Res 35:63–81PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Culbertson WW, Tabbara KF, O'Connor R (1982) Experimental ocular toxoplasmosis in primates. Arch Ophthalmol 100:321–323PubMedCrossRefGoogle Scholar
  28. 28.
    Rochet E, Brunet J, Sabou M et al (2015) Interleukin-6-driven inflammatory response induces retinal pathology in a model of ocular toxoplasmosis reactivation. Infect Immun 83:2109–2117PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Lu F, Huang S, Hu MS, Kasper LH (2005) Experimental ocular toxoplasmosis in genetically susceptible and resistant mice. Infect Immun 73:5160–5165PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Chen J, Qian H, Horai R et al (2013) Use of optical coherence tomography and electroretinography to evaluate retinal pathology in a mouse model of autoimmune uveitis. PLoS One 8:e63904PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Wigg JP, Zhang H, Yang D (2015) A quantitative and standardized method for the evaluation of choroidal neovascularization using MICRON III fluorescein angiograms in rats. PLoS One 10:e0128418PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Fuma S, Nishinaka A, Inoue Y et al (2017) A pharmacological approach in newly established retinal vein occlusion model. Sci Rep 7:43509PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Paques M, Guyomard JL, Simonutti M et al (2007) Panretinal, high-resolution color photography of the mouse fundus. Invest Ophthalmol Vis Sci 48:2769–2774PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Xu H, Koch P, Chen M et al (2008) A clinical grading system for retinal inflammation in the chronic model of experimental autoimmune uveoretinitis using digital fundus images. Exp Eye Res 87:319–326PubMedCrossRefGoogle Scholar
  35. 35.
    Copland DA, Wertheim MS, Armitage WJ et al (2008) The clinical time-course of experimental autoimmune uveoretinitis using topical endoscopic fundal imaging with histologic and cellular infiltrate correlation. Invest Ophthalmol Vis Sci 49:5458–5465PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Chen M, Forrester JV, Xu H (2011) Dysregulation in retinal para-inflammation and age-related retinal degeneration in CCL2 or CCR2 deficient mice. PLoS One 6:e22818PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Furtado JM, Davies MH, Choi D et al (2012) Imaging retinal vascular changes in the mouse model of oxygen-induced retinopathy. Transl Vis Sci Technol 1:5PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Bharadwaj AS, Appukuttan B, Wilmarth PA et al (2013) Role of the retinal vascular endothelial cell in ocular disease. Prog Retin Eye Res 32:102–180PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Blenkinsop TA, Salero E, Stern JH, Temple S (2013) The culture and maintenance of functional retinal pigment epithelial monolayers from adult human eye. Methods Mol Biol 945:45–65PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Fernandez-Godino R, Garland DL, Pierce EA (2016) Isolation, culture and characterization of primary mouse RPE cells. Nat Protoc 11:1206–1218PubMedCrossRefGoogle Scholar
  41. 41.
    Sonoda S, Spee C, Barron E et al (2009) A protocol for the culture and differentiation of highly polarized human retinal pigment epithelial cells. Nat Protoc 4:662–673PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Limb GA, Salt TE, Munro PM et al (2002) In vitro characterization of a spontaneously immortalized human Muller cell line (MIO-M1). Invest Ophthalmol Vis Sci 43:864–869PubMedGoogle Scholar
  43. 43.
    Gaudin C, Forster V, Sahel J et al (1996) Survival and regeneration of adult human and other mammalian photoreceptors in culture. Invest Ophthalmol Vis Sci 37:2258–2268PubMedGoogle Scholar
  44. 44.
    Romano C, Hicks D (2007) Adult retinal neuronal cell culture. Prog Retin Eye Res 26:379–397PubMedCrossRefGoogle Scholar
  45. 45.
    Lu B, Malcuit C, Wang S et al (2009) Long-term safety and function of RPE from human embryonic stem cells in preclinical models of macular degeneration. Stem Cells 27:2126–2135PubMedCrossRefGoogle Scholar
  46. 46.
    Khan A, Behnke MS, Dunay IR et al (2009) Phenotypic and gene expression changes among clonal type I strains of Toxoplasma gondii. Eukaryot Cell 8:1828–1836PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Roberts CW, Cruickshank SM, Alexander J (1995) Sex-determined resistance to Toxoplasma gondii is associated with temporal differences in cytokine production. Infect Immun 63:2549–2555PubMedPubMedCentralGoogle Scholar
  48. 48.
    Mattapallil MJ, Wawrousek EF, Chan CC et al (2012) The Rd8 mutation of the Crb1 gene is present in vendor lines of C57BL/6N mice and embryonic stem cells, and confounds ocular induced mutant phenotypes. Invest Ophthalmol Vis Sci 53:2921–2927PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Lou DA, Hu FN (1987) Specific antigen and organelle expression of a long-term rhesus endothelial cell line. In Vitro Cell Dev Biol 23:75–85PubMedCrossRefGoogle Scholar
  50. 50.
    Dunn KC, Aotaki-Keen AE, Putkey FR, Hjelmeland LM (1996) ARPE-19, a human retinal pigment epithelial cell line with differentiated properties. Exp Eye Res 62:155–169PubMedCrossRefGoogle Scholar
  51. 51.
    Ahmado A, Carr AJ, Vugler AA et al (2011) Induction of differentiation by pyruvate and DMEM in the human retinal pigment epithelium cell line ARPE-19. Invest Ophthalmol Vis Sci 52:7148–7159PubMedCrossRefGoogle Scholar
  52. 52.
    Samuel W, Jaworski C, Postnikova OA et al (2017) Appropriately differentiated ARPE-19 cells regain phenotype and gene expression profiles similar to those of native RPE cells. Mol Vis 23:60–89PubMedPubMedCentralGoogle Scholar
  53. 53.
    Reid TW, Albert DM, Rabson AS et al (1974) Characteristics of an established cell line of retinoblastoma. J Natl Cancer Inst 53:347–360PubMedCrossRefGoogle Scholar
  54. 54.
    McFall RC, Sery TW, Makadon M (1977) Characterization of a new continuous cell line derived from a human retinoblastoma. Cancer Res 37:1003–1010PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Justine R. Smith
    • 1
    Email author
  • Liam M. Ashander
    • 1
  • Yuefang Ma
    • 1
  • Elise Rochet
    • 1
  • João M. Furtado
    • 2
  1. 1.College of Medicine and Public HealthFlinders UniversityBedford ParkAustralia
  2. 2.Faculdade de Medicina de Ribeirão PretoUniversidade de São PauloRibeirão PretoBrazil

Personalised recommendations