Advertisement

Toxoplasma gondii: Bradyzoite Differentiation In Vitro and In Vivo

  • Joshua Mayoral
  • Manlio Di Cristina
  • Vern B. Carruthers
  • Louis M. WeissEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2071)

Abstract

Toxoplasma gondii, a member of the Apicomplexa, is known for its ability to infect an impressive range of host species. It is a common human infection that causes significant morbidity in congenitally infected children and immunocompromised patients. This parasite can be transmitted by bradyzoites, a slowly replicating life stage found within intracellular tissue cysts, and oocysts, the sexual life cycle stage that develops in domestic cats and other Felidae. T. gondii bradyzoites retain the capacity to revert back to the quickly replicating tachyzoite life stage, and when the host is immune compromised unrestricted replication can lead to significant tissue destruction. Bradyzoites are refractory to currently available Toxoplasma treatments. Improving our understanding of bradyzoite biology is critical for the development of therapeutic strategies to eliminate latent infection. This chapter describes a commonly used protocol for the differentiation of T. gondii tachyzoites into bradyzoites using human foreskin fibroblast cultures and a CO2-limited alkaline cell media, which results in a high proportion of differentiated bradyzoites for further study. Also described are methods for purifying tissue cysts from chronically infected mouse brain using isopycnic centrifugation and a recently developed approach for measuring bradyzoite viability.

Key words

Toxoplasma Bradyzoite Tissue cyst Differentiation Stress In vitro In vivo 

Notes

Acknowledgments

This work was supported by 1F31AI136401 (J.M.), R01AI134753 (L.M.W.), and R21AI123495 (L.M.W.).

References

  1. 1.
    Frenkel JK, Smith DD (2003) Determination of the genera of cyst-forming coccidia. Parasitol Res 91:384–389CrossRefGoogle Scholar
  2. 2.
    Dubey JP, Lindsay DS, Speer CA (1998) Structures of Toxoplasma gondii tachyzoites, bradyzoites, and sporozoites and biology and development of tissue cysts. Clin Microbiol Rev 11:267–299CrossRefGoogle Scholar
  3. 3.
    Montoya JG, Liesenfeld O (2004) Toxoplasmosis. Lancet 363:1965–1976CrossRefGoogle Scholar
  4. 4.
    Di Cristina M, Marocco D, Galizi R, Proietti C, Spaccapelo R, Crisanti A (2008) Temporal and spatial distribution of Toxoplasma gondii differentiation into bradyzoites and tissue cyst formation in vivo. Infect Immun 76:3491–3501CrossRefGoogle Scholar
  5. 5.
    Rougier S, Montoya JG, Peyron F (2017) Lifelong persistence of Toxoplasma cysts: a questionable dogma? Trends Parasitol 33:93–101CrossRefGoogle Scholar
  6. 6.
    Sahm M, Fischer HG, Gross U, Reiter-Owona I, Seitz HM (1997) Cyst formation by Toxoplasma gondii in vivo and in brain-cell culture: a comparative morphology and immunocytochemistry study. Parasitol Res 83:659–665CrossRefGoogle Scholar
  7. 7.
    Watts E, Zhao Y, Dhara A, Eller B, Patwardhan A, Sinai AP (2015) Novel approaches reveal that Toxoplasma gondii bradyzoites within tissue cysts are dynamic and replicating entities in vivo. MBio 6:e01155–e01115CrossRefGoogle Scholar
  8. 8.
    Dou Z, McGovern OL, Di Cristina M, Carruthers VB (2014) Toxoplasma gondii ingests and digests host cytosolic proteins. MBio 5:e01188–e01114CrossRefGoogle Scholar
  9. 9.
    Caffaro CE, Boothroyd JC (2011) Evidence for host cells as the major contributor of lipids in the intravacuolar network of Toxoplasma-infected cells. Eukaryot Cell 10:1095–1099CrossRefGoogle Scholar
  10. 10.
    Ferguson DJ, Hutchison WM (1987) An ultrastructural study of the early development and tissue cyst formation of Toxoplasma gondii in the brains of mice. Parasitol Res 73:483–491CrossRefGoogle Scholar
  11. 11.
    Ferguson DJ, Hutchison WM (1987) The host-parasite relationship of Toxoplasma gondii in the brains of chronically infected mice. Virchows Arch A Pathol Anat Histopathol 411:39–43CrossRefGoogle Scholar
  12. 12.
    Fortier B, Coignard-Chatain C, Soete M, Dubremetz JF (1996) Structure and biology of Toxoplasma gondii bradyzoites. Comptes rendus des seances de la Societe de biologie et de ses filiales 190:385–394PubMedGoogle Scholar
  13. 13.
    Sibley LD, Niesman IR, Parmley SF, Cesbron-Delauw MF (1995) Regulated secretion of multi-lamellar vesicles leads to formation of a tubulo-vesicular network in host-cell vacuoles occupied by Toxoplasma gondii. J Cell Sci 108:1669–1677PubMedGoogle Scholar
  14. 14.
    Tu V, Yakubu R, Weiss LM (2017) Observations on bradyzoite biology. Microbes Infect 20:466–476CrossRefGoogle Scholar
  15. 15.
    Bohne W, Gross U, Ferguson DJ, Heesemann J (1995) Cloning and characterization of a bradyzoite-specifically expressed gene (hsp30/bag1) of Toxoplasma gondii, related to genes encoding small heat-shock proteins of plants. Mol Microbiol 16:1221–1230CrossRefGoogle Scholar
  16. 16.
    Parmley SF, Weiss LM, Yang S (1995) Cloning of a bradyzoite-specific gene of Toxoplasma gondii encoding a cytoplasmic antigen. Mol Biochem Parasitol 73:253–257CrossRefGoogle Scholar
  17. 17.
    Buchholz KR, Bowyer PW, Boothroyd JC (2013) Bradyzoite pseudokinase 1 is crucial for efficient oral infectivity of the Toxoplasma gondii tissue cyst. Eukaryot Cell 12:399–410CrossRefGoogle Scholar
  18. 18.
    Tomita T, Bzik DJ, Ma YF, Fox BA, Markillie LM, Taylor RC, Kim K, Weiss LM (2013) The Toxoplasma gondii cyst wall protein CST1 is critical for cyst wall integrity and promotes bradyzoite persistence, e1003823. PLoS Pathog 9Google Scholar
  19. 19.
    Sethi KK, Rahman A, Pelster B, Brandis H (1977) Search for the presence of lectin-binding sites on Toxoplasma gondii. J Parasitol 63:1076–1080CrossRefGoogle Scholar
  20. 20.
    Caffaro CE, Koshy AA, Liu L, Zeiner GM, Hirschberg CB, Boothroyd JC (2013) A nucleotide sugar transporter involved in glycosylation of the Toxoplasma tissue cyst wall is required for efficient persistence of bradyzoites. PLoS Pathog 9:e1003331CrossRefGoogle Scholar
  21. 21.
    Tomita T, Sugi T, Yakubu R, Tu V, Ma Y, Weiss LM (2017) Making home sweet and sturdy: Toxoplasma gondii ppGalNAc-Ts glycosylate in hierarchical order and confer Cyst Wall rigidity. MBio 8:e02048–e02016CrossRefGoogle Scholar
  22. 22.
    Yang S, Parmley SF (1997) Toxoplasma gondii expresses two distinct lactate dehydrogenase homologous genes during its life cycle in intermediate hosts. Gene 184:1–12. 23CrossRefGoogle Scholar
  23. 23.
    Unno A, Suzuki K, Batanova T, Cha SY, Jang HK, Kitoh K, Takashima Y (2009) Visualization of Toxoplasma gondii stage conversion by expression of stage-specific dual fluorescent proteins. Parasitology 136:579–588CrossRefGoogle Scholar
  24. 24.
    Kim SK, Boothroyd JC (2005) Stage-specific expression of surface antigens by Toxoplasma gondii as a mechanism to facilitate parasite persistence. J Immunol 174:8038–8048CrossRefGoogle Scholar
  25. 25.
    Milligan-Myhre K, Wilson SK, Knoll LJ (2016) Developmental change in translation initiation alters the localization of a common microbial protein necessary for Toxoplasma chronic infection. Mol Microbiol 102:1086–1098CrossRefGoogle Scholar
  26. 26.
    Dubey JP, Speer CA, Shen SK, Kwok OC, Blixt JA (1997) Oocyst-induced murine toxoplasmosis: life cycle, pathogenicity, and stage conversion in mice fed Toxoplasma gondii oocysts. J Parasitol 83:870–882CrossRefGoogle Scholar
  27. 27.
    Weiss LM, Kim K (2000) The development and biology of bradyzoites of Toxoplasma gondii. Front Biosci 5:D391–D405CrossRefGoogle Scholar
  28. 28.
    Lyons RE, McLeod R, Roberts CW (2002) Toxoplasma gondii tachyzoite-bradyzoite interconversion. Trends Parasitol 18:198–201CrossRefGoogle Scholar
  29. 29.
    Luder CGK, Rahman T (2017) Impact of the host on Toxoplasma stage differentiation. Microb Cell 4:203–211CrossRefGoogle Scholar
  30. 30.
    Sullivan WJ Jr, Jeffers V (2012) Mechanisms of Toxoplasma gondii persistence and latency. FEMS Microbiol Rev 36:717–733CrossRefGoogle Scholar
  31. 31.
    Luder CG, Giraldo-Velasquez M, Sendtner M, Gross U (1999) Toxoplasma gondii in primary rat CNS cells: differential contribution of neurons, astrocytes, and microglial cells for the intracerebral development and stage differentiation. Exp Parasitol 93:23–32CrossRefGoogle Scholar
  32. 32.
    Swierzy IJ, Luder CG (2015) Withdrawal of skeletal muscle cells from cell cycle progression triggers differentiation of Toxoplasma gondii towards the bradyzoite stage. Cell Microbiol 17:2–17CrossRefGoogle Scholar
  33. 33.
    Cabral CM, Tuladhar S, Dietrich HK, Nguyen E, MacDonald WR, Trivedi T, Devineni A, Koshy AA (2016) Neurons are the primary target cell for the brain-tropic intracellular parasite Toxoplasma gondii. PLoS Pathog 12:e1005447CrossRefGoogle Scholar
  34. 34.
    Melzer TC, Cranston HJ, Weiss LM, Halonen SK (2010) Host cell preference of Toxoplasma gondii cysts in murine brain: a confocal study. J Neuroparasitology 1:pii: N100505CrossRefGoogle Scholar
  35. 35.
    Hong DP, Radke JB, White MW (2017) Opposing transcriptional mechanisms regulate Toxoplasma development. mSphere 2:e00347-16CrossRefGoogle Scholar
  36. 36.
    Holmes MJ, Augusto LDS, Zhang M, Wek RC, Sullivan WJ Jr (2017) Translational control in the latency of apicomplexan parasites. Trends Parasitol 33:947–960CrossRefGoogle Scholar
  37. 37.
    Watts EA, Dhara A, Sinai AP (2017) Purification Toxoplasma gondii tissue cysts using percoll gradients. Curr Protoc Microbiol 45:20c.2.1–20c.2.19CrossRefGoogle Scholar
  38. 38.
    Tobin C, Pollard A, Knoll L (2010) Toxoplasma gondii cyst wall formation in activated bone marrow-derived macrophages and bradyzoite conditions. J Vis Exp 12(42):2091Google Scholar
  39. 39.
    Cornelissen AW, Overdulve JP, Hoenderboom JM (1981) Separation of Isospora (Toxoplasma) gondii cysts and cystozoites from mouse brain tissue by continuous density-gradient centrifugation. Parasitology 83:103–108CrossRefGoogle Scholar
  40. 40.
    Bohne W, Roos DS (1997) Stage-specific expression of a selectable marker in Toxoplasma gondii permits selective inhibition of either tachyzoites or bradyzoites. Mol Biochem Parasitol 88:115–126CrossRefGoogle Scholar
  41. 41.
    Szabo EK, Finney CA (2017) Toxoplasma gondii: one organism multiple models. Trends Parasitol 33:113–127CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Joshua Mayoral
    • 1
  • Manlio Di Cristina
    • 2
  • Vern B. Carruthers
    • 3
  • Louis M. Weiss
    • 1
    • 4
    Email author
  1. 1.Department of PathologyAlbert Einstein College of MedicineBronxUSA
  2. 2.Department of Chemistry, Biology, and BiotechnologyUniversity of PerugiaPerugiaItaly
  3. 3.Department of Microbiology and ImmunologyUniversity of Michigan Medical SchoolAnn ArborUSA
  4. 4.Department of MedicineAlbert Einstein College of MedicineBronxUSA

Personalised recommendations