Advertisement

Measuring Solute Transport in Toxoplasma gondii Parasites

  • Esther Rajendran
  • Kiaran Kirk
  • Giel G. van DoorenEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2071)

Abstract

The uptake of host-derived nutrients is key to the growth and survival of Toxoplasma gondii parasites. Nutrients are acquired via solute transporters that localize to the plasma membrane of the parasites. In this chapter, we describe methodology by which the uptake of solutes via plasma membrane transporters may be monitored and characterized. These assays, used here to investigate the uptake of amino acids into parasites, have broad applicability in measuring the uptake of a diverse range of solutes.

Key words

Toxoplasma gondii Transporters Amino acids Plasma membrane 

Notes

Acknowledgments

Work in this area in our laboratories was supported by a grant from the Australian Research Council (DP150102883) to K.K. and G.v.D.

References

  1. 1.
    Striepen B, Jordan CN, Reiff S, van Dooren GG (2007) Building the perfect parasite: cell division in apicomplexa. PLoS Pathog 3(6):e78CrossRefGoogle Scholar
  2. 2.
    Montoya JG, Liesenfeld O (2004) Toxoplasmosis. Lancet 363(9425):1965–1976CrossRefGoogle Scholar
  3. 3.
    Woo YH, Ansari H, Otto TD, Klinger CM, Kolisko M, Michalek J et al (2015) Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites. Elife 4:e06974CrossRefGoogle Scholar
  4. 4.
    Janouskovec J, Keeling PJ (2016) Evolution: causality and the origin of parasitism. Curr Biol 26(4):R174–R177CrossRefGoogle Scholar
  5. 5.
    Tymoshenko S, Oppenheim RD, Agren R, Nielsen J, Soldati-Favre D, Hatzimanikatis V (2015) Metabolic needs and capabilities of Toxoplasma gondii through combined computational and experimental analysis. PLoS Comput Biol 11(5):e1004261CrossRefGoogle Scholar
  6. 6.
    van Dooren GG, Striepen B (2013) The algal past and parasite present of the apicoplast. Annu Rev Microbiol 67:271–289CrossRefGoogle Scholar
  7. 7.
    Blume M, Rodriguez-Contreras D, Landfear S, Fleige T, Soldati-Favre D, Lucius R et al (2009) Host-derived glucose and its transporter in the obligate intracellular pathogen Toxoplasma gondii are dispensable by glutaminolysis. Proc Natl Acad Sci U S A 106(31):12998–13003CrossRefGoogle Scholar
  8. 8.
    MacRae JI, Sheiner L, Nahid A, Tonkin C, Striepen B, McConville MJ (2012) Mitochondrial metabolism of glucose and glutamine is required for intracellular growth of Toxoplasma gondii. Cell Host Microbe 12(5):682–692CrossRefGoogle Scholar
  9. 9.
    Coppens I (2014) Exploitation of auxotrophies and metabolic defects in Toxoplasma as therapeutic approaches. Int J Parasitol 44(2):109–120CrossRefGoogle Scholar
  10. 10.
    Charron AJ, Sibley LD (2002) Host cells: mobilizable lipid resources for the intracellular parasite Toxoplasma gondii. J Cell Sci 115(Pt 15):3049–3059PubMedGoogle Scholar
  11. 11.
    Fox BA, Gigley JP, Bzik DJ (2004) Toxoplasma gondii lacks the enzymes required for de novo arginine biosynthesis and arginine starvation triggers cyst formation. Int J Parasitol 34(3):323–331CrossRefGoogle Scholar
  12. 12.
    Parker KER, Fairweather SJ, Rajendran E, Blume M, McConville MJ, Bröer S et al (2019) The tyrosine transporter of Toxoplasma gondii is a member of the newly defined apicomplexan amino acid transporter (ApiAT) family. PLoS Pathog 15(2):e1007577CrossRefGoogle Scholar
  13. 13.
    Pernas L, Bean C, Boothroyd JC, Scorrano L (2018) Mitochondria restrict growth of the intracellular parasite Toxoplasma gondii by limiting its uptake of fatty acids. Cell Metab 27(4):886–97 e4CrossRefGoogle Scholar
  14. 14.
    Pfefferkorn ER (1984) Interferon gamma blocks the growth of Toxoplasma gondii in human fibroblasts by inducing the host cells to degrade tryptophan. Proc Natl Acad Sci U S A 81(3):908–912CrossRefGoogle Scholar
  15. 15.
    Schwartzman JD, Pfefferkorn ER (1982) Toxoplasma gondii: purine synthesis and salvage in mutant host cells and parasites. Exp Parasitol 53(1):77–86CrossRefGoogle Scholar
  16. 16.
    Di Cristina M, Dou Z, Lunghi M, Kannan G, Huynh MH, McGovern OL et al (2017) Toxoplasma depends on lysosomal consumption of autophagosomes for persistent infection. Nat Microbiol 2:17096CrossRefGoogle Scholar
  17. 17.
    Joet T, Holterman L, Stedman TT, Kocken CH, Van Der Wel A, Thomas AW et al (2002) Comparative characterization of hexose transporters of Plasmodium knowlesi, Plasmodium yoelii and Toxoplasma gondii highlights functional differences within the apicomplexan family. Biochem J 368(Pt 3):923–929CrossRefGoogle Scholar
  18. 18.
    Chiang CW, Carter N, Sullivan WJ Jr, Donald RG, Roos DS, Naguib FN et al (1999) The adenosine transporter of Toxoplasma gondii. Identification by insertional mutagenesis, cloning, and recombinant expression. J Biol Chem 274(49):35255–35261CrossRefGoogle Scholar
  19. 19.
    Rajendran E, Hapuarachchi SV, Miller CM, Fairweather SJ, Cai Y, Smith NC et al (2017) Cationic amino acid transporters play key roles in the survival and transmission of apicomplexan parasites. Nat Commun 8:14455CrossRefGoogle Scholar
  20. 20.
    Nitzsche R, Zagoriy V, Lucius R, Gupta N (2016) Metabolic cooperation of glucose and glutamine is essential for the lytic cycle of obligate intracellular parasite Toxoplasma gondii. J Biol Chem 291(1):126–141CrossRefGoogle Scholar
  21. 21.
    Sidik SM, Huet D, Ganesan SM, Huynh MH, Wang T, Nasamu AS et al (2016) A genome-wide CRISPR screen in Toxoplasma identifies essential apicomplexan genes. Cell 166(6):1423–1435CrossRefGoogle Scholar
  22. 22.
    Carter NS, Ben Mamoun C, Liu W, Silva EO, Landfear SM, Goldberg DE et al (2000) Isolation and functional characterization of the PfNT1 nucleoside transporter gene from Plasmodium falciparum. J Biol Chem 275(14):10683–10691CrossRefGoogle Scholar
  23. 23.
    Cesar-Razquin A, Snijder B, Frappier-Brinton T, Isserlin R, Gyimesi G, Bai X et al (2015) A call for systematic research on solute carriers. Cell 162(3):478–487CrossRefGoogle Scholar
  24. 24.
    Lin L, Yee SW, Kim RB, Giacomini KM (2015) SLC transporters as therapeutic targets: emerging opportunities. Nat Rev Drug Discov 14(8):543–560CrossRefGoogle Scholar
  25. 25.
    Hapuarachchi SV, Cobbold SA, Shafik SH, Dennis AS, McConville MJ, Martin RE et al (2017) The malaria parasite’s lactate transporter PfFNT is the target of antiplasmodial compounds identified in whole cell phenotypic screens. PLoS Pathog 13(2):e1006180CrossRefGoogle Scholar
  26. 26.
    Lehane AM, Ridgway MC, Baker E, Kirk K (2014) Diverse chemotypes disrupt ion homeostasis in the malaria parasite. Mol Microbiol 94(2):327–339CrossRefGoogle Scholar
  27. 27.
    De Koning HP, Al-Salabi MI, Cohen AM, Coombs GH, Wastling JM (2003) Identification and characterisation of high affinity nucleoside and nucleobase transporters in Toxoplasma gondii. Int J Parasitol 33(8):821–831CrossRefGoogle Scholar
  28. 28.
    Kirk K, Lehane AM (2014) Membrane transport in the malaria parasite and its host erythrocyte. Biochem J 457(1):1–18CrossRefGoogle Scholar
  29. 29.
    Colas C, Ung PM, Schlessinger A (2016) SLC transporters: structure, function, and drug discovery. Medchemcomm 7(6):1069–1081CrossRefGoogle Scholar
  30. 30.
    Schwab JC, Afifi Afifi M, Pizzorno G, Handschumacher RE, Joiner KA (1995) Toxoplasma gondii tachyzoites possess an unusual plasma membrane adenosine transporter. Mol Biochem Parasitol 70(1-2):59–69CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Esther Rajendran
    • 1
  • Kiaran Kirk
    • 1
  • Giel G. van Dooren
    • 1
    Email author
  1. 1.Research School of BiologyAustralian National UniversityActonAustralia

Personalised recommendations