Experimental Approaches for Examining Apicoplast Biology

  • Marco Biddau
  • Jana Ovciarikova
  • Lilach SheinerEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2071)


Genetic manipulation is a powerful tool to study gene function but identifying the direct and primary functional outcomes of any gene depletion is crucial for this strategy to be productive. This is a major challenge for the study of apicoplast biology, because, in the absence of an efficient isolation method, apicoplast functions must be assayed in the parasite. These assays should be performed dynamically from the time of gene depletion, and include standards and controls that separate direct from indirect phenotypes. Here, we describe a pipeline for apicoplast functional analysis and highlight relevant mutant T. gondii cell lines and apicoplast markers that are available in the field and that enhance the specificity of phenotype description.

Key words

Apicoplast Plastid Import Organelle Redox Fluorescence roGFP qPCR qRT-PCR Live imaging 


  1. 1.
    Sheiner L, Demerly JL, Poulsen N, Beatty WL, Lucas O, Behnke MS, White MW, Striepen B (2011) A systematic screen to discover and analyze apicoplast proteins identifies a conserved and essential protein import factor. PLoS Pathog 7(12):e1002392CrossRefGoogle Scholar
  2. 2.
    van Dooren GG, Reiff SB, Tomova C, Meissner M, Humbel BM, Striepen B (2009) A novel dynamin-related protein has been recruited for apicoplast fission in Toxoplasma gondii. Curr Biol 19(4):267–276CrossRefGoogle Scholar
  3. 3.
    Nair SC, Brooks CF, Goodman CD, Sturm A, McFadden GI, Sundriyal S, Anglin JL, Song Y, Moreno SN, Striepen B (2011) Apicoplast isoprenoid precursor synthesis and the molecular basis of fosmidomycin resistance in Toxoplasma gondii. J Exp Med 208(7):1547–1559CrossRefGoogle Scholar
  4. 4.
    Biddau M, Bouchut A, Major J, Saveria T, Tottey J, Oka O, van-Lith M, Jennings KE, Ovciarikova J, DeRocher A, Striepen B, Waller RF, Parsons M, Sheiner L (2018) Two essential Thioredoxins mediate apicoplast biogenesis, protein import, and gene expression in Toxoplasma gondii. PLoS Pathog 14(2):e1006836CrossRefGoogle Scholar
  5. 5.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta C(T)) method. Methods 25(4):402–408CrossRefGoogle Scholar
  6. 6.
    Daher W, Morlon-Guyot J, Sheiner L, Lentini G, Berry L, Tawk L, Dubremetz JF, Wengelnik K, Striepen B, Lebrun M (2015) Lipid kinases are essential for apicoplast homeostasis in Toxoplasma gondii. Cell Microbiol 17(4):559–578CrossRefGoogle Scholar
  7. 7.
    DeRocher AE, Coppens I, Karnataki A, Gilbert LA, Rome ME, Feagin JE, Bradley PJ, Parsons M (2008) A thioredoxin family protein of the apicoplast periphery identifies abundant candidate transport vesicles in Toxoplasma gondii. Eukaryot Cell 7(9):1518–1529CrossRefGoogle Scholar
  8. 8.
    Agrawal S, van Dooren GG, Beatty WL, Striepen B (2009) Genetic evidence that an endosymbiont-derived endoplasmic reticulum-associated protein degradation (ERAD) system functions in import of apicoplast proteins. J Biol Chem 284(48):33683–33691CrossRefGoogle Scholar
  9. 9.
    Sheiner L, Fellows JD, Ovciarikova J, Brooks CF, Agrawal S, Holmes ZC, Bietz I, Flinner N, Heiny S, Mirus O, Przyborski JM, Striepen B (2015) Toxoplasma gondii Toc75 functions in import of stromal but not peripheral apicoplast proteins. Traffic 16(12):1254–1269CrossRefGoogle Scholar
  10. 10.
    van Dooren GG, Tomova C, Agrawal S, Humbel BM, Striepen B (2008) Toxoplasma gondii Tic20 is essential for apicoplast protein import. Proc Natl Acad Sci U S A 105(36):13574–13579CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Marco Biddau
    • 1
  • Jana Ovciarikova
    • 1
  • Lilach Sheiner
    • 1
    Email author
  1. 1.Wellcome Centre for Integrative ParasitologyUniversity of GlasgowGlasgowUK

Personalised recommendations