Antibody Phage Display: Antibody Selection in Solution Using Biotinylated Antigens

  • Esther V. Wenzel
  • Kristian D. R. Roth
  • Giulio Russo
  • Viola Fühner
  • Saskia Helmsing
  • André Frenzel
  • Michael HustEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2070)


Antibody phage display is the most used in vitro technology to generate recombinant, mainly human, antibodies as tools for research, for diagnostic assays, and for therapeutics. Up to now (autumn 2018), eleven FDA/EMA-approved therapeutic antibodies were developed using phage display, including the world best-selling antibody adalimumab.

A key to generate successfully human antibodies in vitro is the choice of the most appropriate antibody selection method, for our goal. In this book chapter, we describe the antibody selection process (panning) in solution and its advantages over panning on immobilized antigens. Detailed protocols on the panning procedure and the screening of monoclonal binders are given.

Key words

Phage display Panning Antibody ScFv 



This review contains updated and revised parts of former protocols [35].


  1. 1.
    Winter G, Milstein C (1991) Man-made antibodies. Nature 349:293–299. Scholar
  2. 2.
    Parmley SF, Smith GP (1988) Antibody-selectable filamentous fd phage vectors: affinity purification of target genes. Gene 73:305–318CrossRefGoogle Scholar
  3. 3.
    McCafferty J, Griffiths AD, Winter G, Chiswell DJ (1990) Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348:552–554. Scholar
  4. 4.
    Barbas CF, Kang AS, Lerner RA, Benkovic SJ (1991) Assembly of combinatorial antibody libraries on phage surfaces: the gene III site. Proc Natl Acad Sci U S A 88:7978–7982CrossRefGoogle Scholar
  5. 5.
    Breitling F, Dübel S, Seehaus T, Klewinghaus I, Little M (1991) A surface expression vector for antibody screening. Gene 104:147–153. Scholar
  6. 6.
    Hust M, Meyer T, Voedisch B, Rülker T, Thie H, El-Ghezal A, Kirsch MI, Schütte M, Helmsing S, Meier D, Schirrmann T, Dübel S (2011) A human scFv antibody generation pipeline for proteome research. J Biotechnol 152:159–170. Scholar
  7. 7.
    Schofield DJ, Pope AR, Clementel V, Buckell J, Chapple SD, Clarke KF, Conquer JS, Crofts AM, Crowther SR, Dyson MR, Flack G, Griffin GJ, Hooks Y, Howat WJ, Kolb-Kokocinski A, Kunze S, Martin CD, Maslen GL, Mitchell JN, O’Sullivan M, Perera RL, Roake W, Shadbolt SP, Vincent KJ, Warford A, Wilson WE, Xie J, Young JL, McCafferty J (2007) Application of phage display to high throughput antibody generation and characterization. Genome Biol 8:R254. Scholar
  8. 8.
    Hoet RM, Cohen EH, Kent RB, Rookey K, Schoonbroodt S, Hogan S, Rem L, Frans N, Daukandt M, Pieters H, van Hegelsom R, Neer NC, Nastri HG, Rondon IJ, Leeds JA, Hufton SE, Huang L, Kashin I, Devlin M, Kuang G, Steukers M, Viswanathan M, Nixon AE, Sexton DJ, Hoogenboom HR, Ladner RC (2005) Generation of high-affinity human antibodies by combining donor-derived and synthetic complementarity-determining-region diversity. Nat Biotechnol 23:344–348. Scholar
  9. 9.
    Omar N, Lim TS (2018) Construction of Naive and Immune Human Fab Phage-Display Library. Methods Mol Biol 1701:25–44. Scholar
  10. 10.
    Holt LJ, Herring C, Jespers LS, Woolven BP, Tomlinson IM (2003) Domain antibodies: proteins for therapy. Trends Biotechnol 21:484–490. Scholar
  11. 11.
    Romão E, Poignavent V, Vincke C, Ritzenthaler C, Muyldermans S, Monsion B (2018) Construction of high-quality camel immune antibody libraries. Methods Mol Biol 1701:169–187. Scholar
  12. 12.
    Hawlisch H, Müller M, Frank R, Bautsch W, Klos A, Köhl J (2001) Site-specific anti-C3a receptor single-chain antibodies selected by differential panning on cellulose sheets. Anal Biochem 293:142–145CrossRefGoogle Scholar
  13. 13.
    Moghaddam A, Borgen T, Stacy J, Kausmally L, Simonsen B, Marvik OJ, Brekke OH, Braunagel M (2003) Identification of scFv antibody fragments that specifically recognise the heroin metabolite 6-monoacetylmorphine but not morphine. J Immunol Methods 280:139–155CrossRefGoogle Scholar
  14. 14.
    Hust M, Maiss E, Jacobsen H-J, Reinard T (2002) The production of a genus-specific recombinant antibody (scFv) using a recombinant potyvirus protease. J Virol Methods 106:225–233CrossRefGoogle Scholar
  15. 15.
    Schütte M, Thullier P, Pelat T, Wezler X, Rosenstock P, Hinz D, Kirsch MI, Hasenberg M, Frank R, Schirrmann T, Gunzer M, Hust M, Dübel S (2009) Identification of a putative Crf splice variant and generation of recombinant antibodies for the specific detection of Aspergillus fumigatus. PLoS One 4:e6625. Scholar
  16. 16.
    Thie H, Toleikis L, Li J, von Wasielewski R, Bastert G, Schirrmann T, Esteves IT, Behrens CK, Fournes B, Fournier N, de Romeuf C, Hust M, Dübel S (2011) Rise and fall of an anti-MUC1 specific antibody. PLoS One 6:e15921. Scholar
  17. 17.
    Keller T, Kalt R, Raab I, Schachner H, Mayrhofer C, Kerjaschki D, Hantusch B (2015) Selection of scFv antibody fragments binding to human blood versus lymphatic endothelial surface antigens by direct cell phage display. PLoS One 10:e0127169. Scholar
  18. 18.
    Rezaei J, RajabiBazl M, Ebrahimizadeh W, Dehbidi GR, Hosseini H (2016) Selection of single chain antibody fragments for targeting prostate specific membrane antigen: a comparison between cell-based and antigen-based approach. Protein Pept Lett 23:336–342CrossRefGoogle Scholar
  19. 19.
    Frenzel A, Kügler J, Wilke S, Schirrmann T, Hust M (2014) Construction of human antibody gene libraries and selection of antibodies by phage display. Methods Mol Biol 1060:215–243. Scholar
  20. 20.
    Ayriss J, Woods T, Bradbury A, Pavlik P (2007) High-throughput screening of single-chain antibodies using multiplexed flow cytometry. J Proteome Res 6:1072–1082. Scholar
  21. 21.
    Jäger V, Büssow K, Wagner A, Weber S, Hust M, Frenzel A, Schirrmann T (2013) High level transient production of recombinant antibodies and antibody fusion proteins in HEK293 cells. BMC Biotechnol 13:52. Scholar
  22. 22.
    Trott M, Weiβ S, Antoni S, Koch J, von Briesen H, Hust M, Dietrich U (2014) Functional characterization of two scFv-Fc antibodies from an HIV controller selected on soluble HIV-1 Env complexes: a neutralizing V3- and a trimer-specific gp41 antibody. PLoS One 9:e97478. Scholar
  23. 23.
    Chan SW, Bye JM, Jackson P, Allain JP (1996) Human recombinant antibodies specific for hepatitis C virus core and envelope E2 peptides from an immune phage display library. J Gen Virol 77(10):2531–2539CrossRefGoogle Scholar
  24. 24.
    Glanville J, Zhai W, Berka J, Telman D, Huerta G, Mehta GR, Ni I, Mei L, Sundar PD, Day GMR, Cox D, Rajpal A, Pons J (2009) Precise determination of the diversity of a combinatorial antibody library gives insight into the human immunoglobulin repertoire. Proc Natl Acad Sci U S A 106:20216–20221. Scholar
  25. 25.
    de Wildt RM, Mundy CR, Gorick BD, Tomlinson IM (2000) Antibody arrays for high-throughput screening of antibody-antigen interactions. Nat Biotechnol 18:989–994. Scholar
  26. 26.
    Kügler J, Wilke S, Meier D, Tomszak F, Frenzel A, Schirrmann T, Dübel S, Garritsen H, Hock B, Toleikis L, Schütte M, Hust M (2015) Generation and analysis of the improved human HAL9/10 antibody phage display libraries. BMC Biotechnol 15:10. Scholar
  27. 27.
    Osbourn J, Groves M, Vaughan T (2005) From rodent reagents to human therapeutics using antibody guided selection. Methods 36:61–68. Scholar
  28. 28.
    Frenzel A, Schirrmann T, Hust M (2016) Phage display-derived human antibodies in clinical development and therapy. MAbs 8:1177–1194. Scholar
  29. 29.
    Kirsch M, Hülseweh B, Nacke C, Rülker T, Schirrmann T, Marschall H-J, Hust M, Dübel S (2008) Development of human antibody fragments using antibody phage display for the detection and diagnosis of Venezuelan equine encephalitis virus (VEEV). BMC Biotechnol 8:66. Scholar
  30. 30.
    Goletz S, Christensen PA, Kristensen P, Blohm D, Tomlinson I, Winter G, Karsten U (2002) Selection of large diversities of anti-idiotypic antibody fragments by phage display. J Mol Biol 315:1087–1097CrossRefGoogle Scholar
  31. 31.
    Finnern R, Pedrollo E, Fisch I, Wieslander J, Marks JD, Lockwood CM, Ouwehand WH (1997) Human autoimmune anti-proteinase 3 scFv from a phage display library. Clin Exp Immunol 107:269–281CrossRefGoogle Scholar
  32. 32.
    Hust M, Steinwand M, Al-Halabi L, Helmsing S, Schirrmann T, Dübel S (2009) Improved microtitre plate production of single chain Fv fragments in Escherichia coli. New Biotechnol 25:424–428. Scholar
  33. 33.
    Goffinet M, Chinestra P, Lajoie-Mazenc I, Medale-Giamarchi C, Favre G, Faye J-C (2008) Identification of a GTP-bound Rho specific scFv molecular sensor by phage display selection. BMC Biotechnol 8:34CrossRefGoogle Scholar
  34. 34.
    Lillo AM, Ayriss JE, Shou Y, Graves SW, Bradbury ARM (2011) Development of phage-based single chain Fv antibody reagents for detection of Yersinia pestis. PLoS One 6:e27756. Scholar
  35. 35.
    Russo G, Meier D, Helmsing S, Wenzel E, Oberle F, Frenzel A, Hust M (2018) Parallelized antibody selection in microtiter plates. In: Hust M, Lim TS (eds) Phage display: methods and protocols. Springer, New York, NY, pp 273–284CrossRefGoogle Scholar
  36. 36.
    Kuhn P, Fühner V, Unkauf T, Moreira GMSG, Frenzel A, Miethe S, Hust M (2016) Recombinant antibodies for diagnostics and therapy against pathogens and toxins generated by phage display. Proteomics Clin Appl 10:922–948. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Esther V. Wenzel
    • 1
  • Kristian D. R. Roth
    • 1
  • Giulio Russo
    • 1
  • Viola Fühner
    • 1
  • Saskia Helmsing
    • 1
  • André Frenzel
    • 1
    • 2
  • Michael Hust
    • 1
    • 2
    Email author
  1. 1.Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung BiotechnologieTechnische Universität BraunschweigBraunschweigGermany
  2. 2.YUMAB GmbHScience Campus Braunschweig SüdBraunschweigGermany

Personalised recommendations