Advertisement

Restriction-Free Construction of a Phage-Presented Very Short Macrocyclic Peptide Library

  • Valentin Jakob
  • Saskia Helmsing
  • Michael Hust
  • Martin EmptingEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2070)

Abstract

Phage display is a commonly used technology for the screening of large clonal libraries of proteins and peptides. The construction of peptide libraries containing very short sequences, however, poses certain problems for conventional restriction-based cloning procedures, which are rooted in the necessity to purify restricted library oligos. Herein, we present an alternative cloning method especially suitable for such very short sequences of about only 21 base pairs resulting in a 60 bp insert. The employed restriction-free hot fusion cloning strategy allows for facile library construction bypassing the need for purification of the small oligo. The library includes one well-defined disulfide bridge rendering the displayed macrocyclic peptide sequences as attractive scaffolds for novel active principles.

Key words

Library construction Hot fusion cloning Restriction-free cloning Macrocyclic oligopeptide phage display Panning 

Notes

Acknowledgments

This review contains updated and revised parts of former protocols by Zantow et al. [16] and Russo et al. [17]. We thank Rolf W. Hartmann for his continuous support.

References

  1. 1.
    Craik DJ, Lee M-H, Rehm FBH et al (2018) Ribosomally-synthesised cyclic peptides from plants as drug leads and pharmaceutical scaffolds. Bioorg Med Chem 26(10):2727–2737.  https://doi.org/10.1016/j.bmc.2017.08.005CrossRefPubMedGoogle Scholar
  2. 2.
    Bogdanowich-Knipp SJ, Chakrabarti S, Siahaan TJ et al (1999) Solution stability of linear vs. cyclic RGD peptides. J Pept Res 53(5):530–541.  https://doi.org/10.1034/j.1399-3011.1999.00052.xCrossRefPubMedGoogle Scholar
  3. 3.
    Diao L, Meibohm B (2013) Pharmacokinetics and pharmacokinetic-pharmacodynamic correlations of therapeutic peptides. Clin Pharmacokinet 52(10):855–868.  https://doi.org/10.1007/s40262-013-0079-0CrossRefPubMedGoogle Scholar
  4. 4.
    Lipinski CA (2004) Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol 1(4):337–341.  https://doi.org/10.1016/j.ddtec.2004.11.007CrossRefPubMedGoogle Scholar
  5. 5.
    Brown T, Brown N, Stollar EJ (2018) Most yeast SH3 domains bind peptide targets with high intrinsic specificity. PLoS One 13(2):e0193128.  https://doi.org/10.1371/journal.pone.0193128CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Sidhu SS, Lowman HB, Cunningham BC et al (2000) [21] Phage display for selection of novel binding peptides. In: Applications of chimeric genes and hybrid proteins—part C: protein-protein interactions and genomics, vol 328. Elsevier, Amsterdam, pp 333–IN5CrossRefGoogle Scholar
  7. 7.
    Sakamoto K, Sogabe S, Kamada Y et al (2017) Discovery of high-affinity BCL6-binding peptide and its structure-activity relationship. Biochem Biophys Res Commun 482(2):310–316.  https://doi.org/10.1016/j.bbrc.2016.11.060CrossRefPubMedGoogle Scholar
  8. 8.
    Rentero Rebollo I, Heinis C (2013) Phage selection of bicyclic peptides. Methods 60(1):46–54.  https://doi.org/10.1016/j.ymeth.2012.12.008CrossRefPubMedGoogle Scholar
  9. 9.
    Diderich P, Heinis C (2014) Phage selection of bicyclic peptides binding Her2. Tetrahedron 70(42):7733–7739.  https://doi.org/10.1016/j.tet.2014.05.106CrossRefGoogle Scholar
  10. 10.
    Ryvkin A, Ashkenazy H, Weiss-Ottolenghi Y et al (2018) Phage display peptide libraries: deviations from randomness and correctives. Nucleic Acids Res 46(9):e52.  https://doi.org/10.1093/nar/gky077CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Watters JM, Telleman P, Junghans RP (1997) An optimized method for cell-based phage display panning. Immunotechnology 3(1):21–29.  https://doi.org/10.1016/S1380-2933(96)00056-5CrossRefPubMedGoogle Scholar
  12. 12.
    Nguyen X-H, Trinh T-L, Vu T-B-H et al (2018) Isolation of phage-display library-derived scFv antibody specific to Listeria monocytogenes by a novel immobilized method. J Appl Microbiol 124(2):591–597.  https://doi.org/10.1111/jam.13648CrossRefPubMedGoogle Scholar
  13. 13.
    Hust M, Meyer T, Voedisch B et al (2011) A human scFv antibody generation pipeline for proteome research. J Biotechnol 152(4):159–170.  https://doi.org/10.1016/j.jbiotec.2010.09.945CrossRefPubMedGoogle Scholar
  14. 14.
    Dretzen G, Bellard M, Sassone-Corsi P et al (1981) A reliable method for the recovery of DNA fragments from agarose and acrylamide gels. Anal Biochem 112(2):295–298.  https://doi.org/10.1016/0003-2697(81)90296-7CrossRefPubMedGoogle Scholar
  15. 15.
    Fu C, Donovan WP, Shikapwashya-Hasser O et al (2014) Hot Fusion: an efficient method to clone multiple DNA fragments as well as inverted repeats without ligase. PLoS One 9(12):e115318.  https://doi.org/10.1371/journal.pone.0115318CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Zantow J, Moreira GMSG, Dübel S et al (2018) ORFeome phage display. Methods Mol Biol 1701:477–495.  https://doi.org/10.1007/978-1-4939-7447-4_27CrossRefPubMedGoogle Scholar
  17. 17.
    Russo G, Meier D, Helmsing S et al (2018) Parallelized antibody selection in microtiter plates. Methods Mol Biol 1701:273–284.  https://doi.org/10.1007/978-1-4939-7447-4_14CrossRefPubMedGoogle Scholar
  18. 18.
    Frenzel A, Schirrmann T, Hust M (2016) Phage display-derived human antibodies in clinical development and therapy. MAbs 8(7):1177–1194.  https://doi.org/10.1080/19420862.2016.1212149CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Maurer CK, Fruth M, Empting M et al (2016) Discovery of the first small-molecule CsrA-RNA interaction inhibitors using biophysical screening technologies. Future Med Chem 8(9):931–947.  https://doi.org/10.4155/fmc-2016-0033CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Valentin Jakob
    • 1
    • 2
  • Saskia Helmsing
    • 3
  • Michael Hust
    • 3
    • 4
  • Martin Empting
    • 1
    • 2
    Email author
  1. 1.Department of Drug Design and Optimization (DDOP)Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)—Helmholtz Centre for Infection Research (HZI)SaarbrückenGermany
  2. 2.Department of PharmacySaarland UniversitySaarbrückenGermany
  3. 3.Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung BiotechnologieTechnische Universität BraunschweigBraunschweigGermany
  4. 4.YUMAB GmbHScience Campus Braunschweig SüdBraunschweigGermany

Personalised recommendations