Advertisement

Diabetic Nephropathy: An Overview

  • Manpreet K. Sagoo
  • Luigi GnudiEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2067)

Abstract

Diabetic nephropathy (DN) is one of the most feared diabetic chronic microvascular complications and the major cause of end-stage renal disease (ESRD). The classical presentation of DN is characterized by hyperfiltration and albuminuria in the early phases which is then followed by a progressive renal function decline. The presentation of diabetic kidney disease (DKD) can vary especially in patients with T2DM where concomitant presence of other glomerular/tubular pathologies and severe peripheral vascular disease can become important confounders. All-cause mortality in individuals with DKD is approximately 30 times higher than that in diabetic patients without nephropathy and a great majority of patients with DKD will die from cardiovascular disease before they reach ESRD. The management of metabolic and hemodynamic perturbations for the prevention and for the delay of progression of DKD is very important. DKD is a global challenge and a significant social and economic burden; research should aim at developing new ideas to tackle this devastating condition.

Key words

Diabetes mellitus Diabetic kidney disease Epidemiology Management Pathogenesis 

References

  1. 1.
    Collaboration NCDRF (2016) Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet 387(10027):1513–1530CrossRefGoogle Scholar
  2. 2.
    Federation ID (2018) IDF diabetes atlas, BrusselsGoogle Scholar
  3. 3.
    Organization WH (2018) Global Health Estimates 2016: Deaths by Cause, Age, Sex, by Country and by Region, 2000–2016. Switzerland, GenevaGoogle Scholar
  4. 4.
    American Diabetes A (2016) 2. Classification and diagnosis of diabetes. Diabetes Care 39(Suppl 1):S13–S22Google Scholar
  5. 5.
    Ahlqvist E, Storm P, Karajamaki A, Martinell M, Dorkhan M, Carlsson A et al (2018) Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol 6(5):361–369CrossRefGoogle Scholar
  6. 6.
    Hovind P, Rossing P, Tarnow L, Smidt UM, Parving HH (2001) Progression of diabetic nephropathy. Kidney Int 59(2):702–709CrossRefGoogle Scholar
  7. 7.
    Gnudi L, Gentile G, Ruggenenti P (2016) The patient with diabetes mellitus. In: Turner N, Lamiere N, Goldsmith DJ, Wineearls CG, Himmelfarb J, Remuzzi G (eds) Oxford textbook of clinical nephrology, vol 2. Oxford University Press, Oxford, pp 1199–1247Google Scholar
  8. 8.
    Young BA, Maynard C, Boyko EJ (2003) Racial differences in diabetic nephropathy, cardiovascular disease, and mortality in a national population of veterans. Diabetes Care 26(8):2392–2399CrossRefGoogle Scholar
  9. 9.
    Gnudi L, Thomas SM, Viberti G (2007) Mechanical forces in diabetic kidney disease: a trigger for impaired glucose metabolism. J Am Soc Nephrol 18(8):2226–2232CrossRefGoogle Scholar
  10. 10.
    Saran R, Robinson B, Abbott KC, Agodoa LY, Albertus P, Ayanian J et al (2017) US Renal Data System 2016 Annual Data Report: Epidemiology of Kidney Disease in the United States. Am J Kidney Dis 69(3 Suppl 1):A7–A8CrossRefGoogle Scholar
  11. 11.
    Gross JL, de Azevedo MJ, Silveiro SP, Canani LH, Caramori ML, Zelmanovitz T (2005) Diabetic nephropathy: diagnosis, prevention, and treatment. Diabetes Care 28(1):164–176CrossRefGoogle Scholar
  12. 12.
    Haraldsson B, Nystrom J, Deen WM (2008) Properties of the glomerular barrier and mechanisms of proteinuria. Physiol Rev 88(2):451–487CrossRefGoogle Scholar
  13. 13.
    Gnudi L, Coward RJ, Long DA (2016) Diabetic nephropathy: perspective on novel molecular mechanisms. Trends Endocrinol Metab 27(11):820–830CrossRefGoogle Scholar
  14. 14.
    Deckert T, Feldt-Rasmussen B, Borch-Johnsen K, Jensen T, Kofoed-Enevoldsen A (1989) Albuminuria reflects widespread vascular damage. The Steno hypothesis. Diabetologia 32(4):219–226CrossRefGoogle Scholar
  15. 15.
    Berhane AM, Weil EJ, Knowler WC, Nelson RG, Hanson RL (2011) Albuminuria and estimated glomerular filtration rate as predictors of diabetic end-stage renal disease and death. Clin J Am Soc Nephrol 6(10):2444–2451CrossRefGoogle Scholar
  16. 16.
    de Boer IH, Sun W, Cleary PA, Lachin JM, Molitch ME, Steffes MW et al (2011) Intensive diabetes therapy and glomerular filtration rate in type 1 diabetes. N Engl J Med 365(25):2366–2376CrossRefGoogle Scholar
  17. 17.
    UK Prospective Diabetes Study (UKPDS) Group (1998) Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352(9131):837–853CrossRefGoogle Scholar
  18. 18.
    UK Prospective Diabetes Study Group (1998) Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. BMJ 317(7160):703–713CrossRefGoogle Scholar
  19. 19.
    Lewis EJ, Hunsicker LG, Clarke WR, Berl T, Pohl MA, Lewis JB et al (2001) Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med 345(12):851–860CrossRefGoogle Scholar
  20. 20.
    Brenner BM, Cooper ME, de Zeeuw D, Keane WF, Mitch WE, Parving HH et al (2001) Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 345(12):861–869CrossRefGoogle Scholar
  21. 21.
    Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, et al. (2019) Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med 13;380(24):2295–2306CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Faculty of Life Sciences & MedicineSchool of Cardiovascular Medicine & Sciences, British Heart Foundation Centre of Research Excellence, King’s College LondonLondonUK

Personalised recommendations