A Quarter Century of PCR-Applied Techniques and Their Still-Increasing Fields of Use

  • Alessandro Raso
  • Roberto BiassoniEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2065)


Quantitative polymerase chain reaction (PCR) is the basis of a variety of scientific applications and publications in a broad range of interests. It also plays a fundamental role in nucleic acid sequencing applications, including Next Generation Sequencing (NGS)-based ones. The potential of PCR diagnostics is enormous, particularly for the early diagnosis of life-threatening infections. Some other fields of applications that use PCR on a regular basis include oncology, genetics, microbiology, biochemistry, immunogenetics, NGS, ecology, comparative genome evolution, ancestry DNA, pharmacogenomics, personalized medicine, and even general medicine.

Key words

quantitative Polymerase Chain Reaction (qPCR) High Resolution Melting (HRM) digital Polymerase Chain Reaction (dPCR) Dye-labeled probe Intercalating dye 


  1. 1.
    Raso A, Biassoni R (2014) Twenty years of qPCR: a mature technology? Methods Mol Biol 1160:1–3CrossRefGoogle Scholar
  2. 2.
    Bustin S (2017) The continuing problem of poor transparency of reporting and use of inappropriate methods for RT-qPCR. Biomol Detect Quantif 12:7–9CrossRefGoogle Scholar
  3. 3.
    Bustin SA (2005) Real-time, fluorescence-based quantitative PCR: a snapshot of current procedures and preferences. Expert Rev Mol Diagn 5:493–498CrossRefGoogle Scholar
  4. 4.
    Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415CrossRefGoogle Scholar
  5. 5.
    Bustin SA, Wittwer CT (2017) MIQE: a step toward more robust and reproducible quantitative PCR. Clin Chem 63(9):1537–1538CrossRefGoogle Scholar
  6. 6.
    Bustin SA, Benes V, Garson J, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley G, Wittwer CT, Schjerling P, Day PJ, Abreu M, Aguado B, Beaulieu JF, Beckers A, Bogaert S, Browne JA, Carrasco-Ramiro F, Ceelen L, Ciborowski K, Cornillie P, Coulon S, Cuypers A, De Brouwer S, De Ceuninck L, De Craene J, De Naeyer H, De Spiegelaere W, Deckers K, Dheedene A, Durinck K, Ferreira-Teixeira M, Fieuw A, Gallup JM, Gonzalo-Flores S, Goossens K, Heindryckx F, Herring E, Hoenicka H, Icardi L, Jaggi R, Javad F, Karampelias M, Kibenge F, Kibenge M, Kumps C, Lambertz I, Lammens T, Markey A, Messiaen P, Mets E, Morais S, Mudarra-Rubio A, Nakiwala J, Nelis H, Olsvik PA, Pérez-Novo C, Plusquin M, Remans T, Rihani A, Rodrigues-Santos P, Rondou P, Sanders R, Schmidt-Bleek K, Skovgaard K, Smeets K, Tabera L, Toegel S, Van Acker T, Van den Broeck W, Van der Meulen J, Van Gele M, Van Peer G, Van Poucke M, Van Roy N, Vergult S, Wauman J, Tshuikina-Wiklander M, Willems E, Zaccara S, Zeka F, Vandesompele J (2013) The need for transparency and good practices in the qPCR literature. Nat Methods 10:1063–1067CrossRefGoogle Scholar
  7. 7.
    Kristensen GB, Meijer P (2017) Interpretation of EQA results and EQA-based trouble shooting. Biochem Med 27:49–62CrossRefGoogle Scholar
  8. 8.
    Badrick T, Punyalack W, Graham P (2018) Commutability and traceability in EQA programs. Clin Biochem 56:102–104CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.ASL3 Sistema Sanitario Regione LiguriaS.C. Laboratorio d’AnalisiGenoaItaly
  2. 2.Molecular DiagnosticsIRCCS, Istituto Giannina GasliniGenovaItaly

Personalised recommendations