Advertisement

Native Mass Spectrometry Analysis of Affinity-Captured Endogenous Yeast RNA Exosome Complexes

  • Paul Dominic B. OlinaresEmail author
  • Brian T. Chait
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2062)

Abstract

Native mass spectrometry (MS) enables direct mass measurement of intact protein assemblies generating relevant subunit composition and stoichiometry information. Combined with cross-linking and structural data, native MS-derived information is crucial for elucidating the architecture of macromolecular assemblies by integrative structural methods. The exosome complex from budding yeast was among the first endogenous protein complexes to be affinity isolated and subsequently characterized by this technique, providing improved understanding of its composition and structure. We present a protocol that couples efficient affinity capture of yeast exosome complexes and sensitive native MS analysis, including rapid affinity isolation of the endogenous exosome complex from cryolysed yeast cells, elution in nondenaturing conditions by protease cleavage, depletion of the protease, buffer exchange, and native MS measurements using an Orbitrap-based instrument (Exactive Plus EMR).

Key words

Native mass spectrometry Endogenous protein assemblies Exosome complex Affinity capture Exactive Plus EMR 

Notes

Acknowledgments

This work is supported by National Institutes of Health grants P41 GM103314 and P41 GM109824. We gratefully acknowledge the members of the Chait lab and the Laboratory of Cellular and Structural Biology (headed by Professor Michael Rout) at the Rockefeller University for feedback and insightful discussions. We especially thank Andrew Krutchinsky for the design and implementation of the modifications in the nanoelectrospray setup described here. We also thank Zhanna Hakhverdyan for providing the cryomilled yeast powder.

References

  1. 1.
    Hartwell L, Hopfield J, Leibler S, Murray A (1999) From molecular to modular cell biology. Nature 402:C47–C52PubMedCrossRefGoogle Scholar
  2. 2.
    Robinson CV, Sali A, Baumeister W (2007) The molecular sociology of the cell. Nature 450:973–982PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Alber F, Förster F, Korkin D et al (2008) Integrating diverse data for structure determination of macromolecular assemblies. Annu Rev Biochem 77:443–477PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Lössl P, van de Waterbeemd M, Heck AJ et al (2016) The diverse and expanding role of mass spectrometry in structural and molecular biology. EMBO J 16:155–166Google Scholar
  5. 5.
    Chait BT, Cadene M, Olinares PD et al (2016) Revealing higher order protein structure using mass spectrometry. J Am Soc Mass Spectrom 27:952–965PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Loo J (1997) Studying noncovalent protein complexes by electrospray ionization mass spectrometry. Mass Spectrom Rev 16:1–23PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Heck AJR (2008) Native mass spectrometry: a bridge between interactomics and structural biology. Nat Methods 5:927–933PubMedCrossRefGoogle Scholar
  8. 8.
    Taverner T, Hernández H, Sharon M et al (2008) Subunit architecture of intact protein complexes from mass spectrometry and homology modeling. Acc Chem Res 41:617–627PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Leney AC, Heck AJR (2017) Native mass spectrometry: what is in the name? J Am Soc Mass Spectrom 28:5–13PubMedCrossRefGoogle Scholar
  10. 10.
    Snijder J, Heck AJR (2014) Analytical approaches for size and mass analysis of large protein assemblies. Annu Rev Anal Chem (Palo Alto, Calif) 7:43–64CrossRefGoogle Scholar
  11. 11.
    Marcoux J, Robinson CV (2013) Twenty years of gas phase structural biology. Structure 21:1541–1550PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Erba EB, Petosa C (2015) The emerging role of native mass spectrometry in characterizing the structure and dynamics of macromolecular complexes. Protein Sci 24:1176–1192CrossRefGoogle Scholar
  13. 13.
    Gavin A-C, Aloy P, Grandi P et al (2006) Proteome survey reveals modularity of the yeast cell machinery. Nature 440:631–636PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Krogan NJ, Cagney G, Yu H et al (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440:637–643PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Mitchell P, Petfalski E, Shevchenko A et al (1997) The exosome: a conserved eukaryotic RNA processing complex containing multiple 3′→5′ Exoribonucleases. Cell 91:457–466CrossRefGoogle Scholar
  16. 16.
    Liu Q, Greimann JC, Lima CD (2006) Reconstitution, activities, and structure of the eukaryotic RNA exosome. Cell 127:1223–1237PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Hernández H, Dziembowski A, Taverner T et al (2006) Subunit architecture of multimeric complexes isolated directly from cells. EMBO Rep 7:605–610PubMedPubMedCentralGoogle Scholar
  18. 18.
    Synowsky SA, van den Heuvel RHH, Mohammed S et al (2006) Probing genuine strong interactions and post-translational modifications in the heterogeneous yeast exosome protein complex. Mol Cell Proteomics 5:1581–1592PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Synowsky SA, Heck AJ (2008) The yeast ski complex is a hetero-tetramer. Protein Sci 17:119–125PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Synowsky SA, van Wijk M, Raijmakers R, Heck AJR (2009) Comparative multiplexed mass spectrometric analyses of endogenously expressed yeast nuclear and cytoplasmic exosomes. J Mol Biol 385:1300–1313PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Olinares PDB, Dunn AD, Padovan JC et al (2016) A robust workflow for native mass spectrometric analysis of affinity-isolated endogenous protein assemblies. Anal Chem 88:2799–2807PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Rigaut G, Shevchenko A, Rutz B et al (1999) A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol 17:1030–1032PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Puig O, Caspary F, Rigaut G et al (2001) The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods 24:218–229PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Oeffinger M, Wei KE, Rogers R et al (2007) Comprehensive analysis of diverse ribonucleoprotein complexes. Nat Methods 4:951–956PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Cristea IM, Williams R, Chait BT, Rout MP (2005) Fluorescent proteins as proteomic probes. Mol Cell Proteomics 4:1933–1941PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    LaCava J, Fernandez-Martinez J, Hakhverdyan Z, Rout MP (2016) Optimized affinity capture of yeast protein complexes. Cold Spring Harb Protoc 2016:615–619Google Scholar
  27. 27.
    Hakhverdyan Z, Domanski M, Hough LE et al (2015) Rapid, optimized interactomic screening. Nat Methods 12:553–560PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Rose RJ, Damoc E, Denisov E et al (2012) High-sensitivity Orbitrap mass analysis of intact macromolecular assemblies. Nat Methods 9:1084–1086PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Ghaemmaghami S, Huh W-K, Bower K et al (2003) Global analysis of protein expression in yeast. Nature 425:737–741PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    LaCava J, Chandramouli N, Jiang H, Rout MP (2013) Improved native isolation of endogenous protein A-tagged protein complexes. BioTechniques 54:213–216PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Cristea IM, Chait BT (2011) Conjugation of magnetic beads for immunopurification of protein complexes. Cold Spring Harb Protoc 6:534–538Google Scholar
  32. 32.
    Carrington JC, Dougherty WG (1988) A viral cleavage site cassette: identification of amino acid sequences required for tobacco etch virus polyprotein processing. Proc Natl Acad Sci U S A 85:3391–3395PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Parks TD, Leuther KK, Howard ED et al (1994) Release of proteins and peptides from fusion proteins using a recombinant plant virus proteinase. Anal Biochem 216:413–417PubMedCrossRefGoogle Scholar
  34. 34.
    Kapust RB, Toözseór J, Copeland TD, Waugh DS (2002) The P1′ specificity of tobacco etch virus protease. Biochem Biophys Res Commun 294:949–955PubMedCrossRefGoogle Scholar
  35. 35.
    Wilm M, Mann M (1996) Analytical properties of the nanoelectrospray ion source. Anal Chem 68:1–8PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Lössl P, Snijder J, Heck AJR (2014) Boundaries of mass resolution in native mass spectrometry. J Am Soc Mass Spectrom 25:906–917PubMedCrossRefGoogle Scholar
  37. 37.
    Marty MT, Baldwin AJ, Marklund EG et al (2015) Bayesian Deconvolution of mass and ion mobility spectra: from binary interactions to Polydisperse ensembles. Anal Chem 87:4370–4376PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Reid DJ, Diesing JM, Miller MA et al (2019) MetaUniDec: high-throughput deconvolution of native mass spectra. J Am Soc Mass Spectrom 30:118–127Google Scholar
  39. 39.
    Sobott F, Hernández H, McCammon MG et al (2002) A tandem mass spectrometer for improved transmission and analysis of large macromolecular assemblies. Anal Chem 74:1402–1407PubMedCrossRefGoogle Scholar
  40. 40.
    Van Den Heuvel RHH, Van Duijn E, Mazon H et al (2006) Improving the performance of a quadrupole time-of-flight instrument for macromolecular mass spectrometry. Anal Chem 78:7473–7483PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Pringle SD, Giles K, Wildgoose JL et al (2007) An investigation of the mobility separation of some peptide and protein ions using a new hybrid quadrupole/travelling wave IMS/oa-ToF instrument. Int J Mass Spectrom 261:1–12CrossRefGoogle Scholar
  42. 42.
    Hernández H, Robinson CV (2007) Determining the stoichiometry and interactions of macromolecular assemblies from mass spectrometry. Nat Protoc 2:715–726PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Kondrat FDL, Struwe WB, Benesch JLP (2015) Native mass spectrometry: towards high-throughput structural proteomics. Methods Mol Biol 1261:349–371PubMedCrossRefGoogle Scholar
  44. 44.
    Belov ME, Damoc E, Denisov E et al (2013) From protein complexes to subunit backbone fragments: a multi-stage approach to native mass spectrometry. Anal Chem 85:11163–11173PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Ben-Nissan G, Belov ME, Morgenstern D et al (2017) Triple-stage mass spectrometry unravels the heterogeneity of an endogenous protein complex. Anal Chem 89:4708–4715PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    van de Waterbeemd M, Fort KL, Boll D et al (2017) High-fidelity mass analysis unveils heterogeneity in intact ribosomal particles. Nat Methods 14:283–286PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Makarov A (2000) Electrostatic axially harmonic orbital trapping: a high-performance technique of mass analysis. Anal Chem 72:1156–1162PubMedCrossRefGoogle Scholar
  48. 48.
    Makarov A, Denisov E (2009) Dynamics of ions of intact proteins in the orbitrap mass analyzer. J Am Soc Mass Spectrom 20:1486–1495PubMedCrossRefGoogle Scholar
  49. 49.
    Benesch JLP, Aquilina JA, Ruotolo BT et al (2006) Tandem mass spectrometry reveals the quaternary organization of macromolecular assemblies. Chem Biol 13:597–605PubMedCrossRefGoogle Scholar
  50. 50.
    Makino DL, Baumgärtner M, Conti E (2013) Crystal structure of an RNA-bound 11-subunit eukaryotic exosome complex. Nature 495:70–75PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Laboratory of Mass Spectrometry and Gaseous Ion ChemistryThe Rockefeller UniversityNew YorkUSA

Personalised recommendations