Advertisement

The RNA Exosome and Human Disease

  • Milo B. FaskenEmail author
  • Derrick J. Morton
  • Emily G. Kuiper
  • Stephanie K. Jones
  • Sara W. Leung
  • Anita H. CorbettEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2062)

Abstract

The evolutionarily conserved RNA exosome is a multisubunit ribonuclease complex that processes and/or degrades numerous RNAs. Recently, mutations in genes encoding both structural and catalytic subunits of the RNA exosome have been linked to human disease. Mutations in the structural exosome gene EXOSC2 cause a distinct syndrome that includes retinitis pigmentosa, hearing loss, and mild intellectual disability. In contrast, mutations in the structural exosome genes EXOSC3 and EXOSC8 cause pontocerebellar hypoplasia type 1b (PCH1b) and type 1c (PCH1c), respectively, which are related autosomal recessive, neurodegenerative diseases. In addition, mutations in the structural exosome gene EXOSC9 cause a PCH-like disease with cerebellar atrophy and spinal motor neuronopathy. Finally, mutations in the catalytic exosome gene DIS3 have been linked to multiple myeloma, a neoplasm of plasma B cells. How mutations in these RNA exosome genes lead to distinct, tissue-specific diseases is not currently well understood. In this chapter, we examine the role of the RNA exosome complex in human disease and discuss the mechanisms by which mutations in different exosome subunit genes could impair RNA exosome function and give rise to diverse diseases.

Key words

Pontocerebellar hypoplasia Retinitis pigmentosa Spinal motor neuronopathy Multiple myeloma RNA exosome EXOSC2 EXOSC3 EXOSC8 EXOSC9 DIS3 Rrp4 Rrp40 Rrp43 Rrp45 Rrp44 

Notes

Acknowledgments

We thank our colleagues Elena Conti, Christopher D. Lima, and Ambro van Hoof for sharing their expertise in analysis of the RNA exosome as well as members of the Corbett lab for helpful discussions and comments. This work was supported by both an NIH R01 grant (GM058728) and NIH R21 grant (AG054206) to AHC and both an NIH F32 grant (GM125350) and a Postdoctoral Enrichment Award from the Burroughs Wellcome Fund to DJM.

References

  1. 1.
    Mitchell P, Petfalski E, Shevchenko A, Mann M, Tollervey D (1997) The exosome: a conserved eukaryotic RNA processing complex containing multiple 3′ → 5′ exoribonucleases. Cell 91(4):457–466CrossRefGoogle Scholar
  2. 2.
    Allmang C, Petfalski E, Podtelejnikov A, Mann M, Tollervey D, Mitchell P (1999) The yeast exosome and human PM-Scl are related complexes of 3′ → 5′ exonucleases. Genes Dev 13(16):2148–2158CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Schilders G, Raijmakers R, Raats JM, Pruijn GJ (2005) MPP6 is an exosome-associated RNA-binding protein involved in 5.8S rRNA maturation. Nucleic Acids Res 33(21):6795–6804CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Liu Q, Greimann JC, Lima CD (2006) Reconstitution, activities, and structure of the eukaryotic RNA exosome. Cell 127(6):1223–1237CrossRefGoogle Scholar
  5. 5.
    Makino DL, Baumgartner M, Conti E (2013) Crystal structure of an RNA-bound 11-subunit eukaryotic exosome complex. Nature 495(7439):70–75CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Dziembowski A, Lorentzen E, Conti E, Seraphin B (2007) A single subunit, Dis3, is essentially responsible for yeast exosome core activity. Nat Struct Mol Biol 14(1):15–22CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Weick EM, Puno MR, Januszyk K, Zinder JC, DiMattia MA, Lima CD (2018) Helicase-Dependent RNA Decay Illuminated by a Cryo-EM Structure of a Human Nuclear RNA Exosome-MTR4 Complex. Cell 173(7):1663–1677 e1621CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Wan J, Yourshaw M, Mamsa H, Rudnik-Schoneborn S, Menezes MP, Hong JE, Leong DW, Senderek J, Salman MS, Chitayat D, Seeman P, von Moers A, Graul-Neumann L, Kornberg AJ, Castro-Gago M, Sobrido MJ, Sanefuji M, Shieh PB, Salamon N, Kim RC, Vinters HV, Chen Z, Zerres K, Ryan MM, Nelson SF, Jen JC (2012) Mutations in the RNA exosome component gene EXOSC3 cause pontocerebellar hypoplasia and spinal motor neuron degeneration. Nat Genet 44(6):704–708CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Di Donato N, Neuhann T, Kahlert AK, Klink B, Hackmann K, Neuhann I, Novotna B, Schallner J, Krause C, Glass IA, Parnell SE, Benet-Pages A, Nissen AM, Berger W, Altmuller J, Thiele H, Weber BH, Schrock E, Dobyns WB, Bier A, Rump A (2016) Mutations in EXOSC2 are associated with a novel syndrome characterised by retinitis pigmentosa, progressive hearing loss, premature ageing, short stature, mild intellectual disability and distinctive gestalt. J Med Genet 53(6):419–425CrossRefGoogle Scholar
  10. 10.
    Boczonadi V, Muller JS, Pyle A, Munkley J, Dor T, Quartararo J, Ferrero I, Karcagi V, Giunta M, Polvikoski T, Birchall D, Princzinger A, Cinnamon Y, Lutzkendorf S, Piko H, Reza M, Florez L, Santibanez-Koref M, Griffin H, Schuelke M, Elpeleg O, Kalaydjieva L, Lochmuller H, Elliott DJ, Chinnery PF, Edvardson S, Horvath R (2014) EXOSC8 mutations alter mRNA metabolism and cause hypomyelination with spinal muscular atrophy and cerebellar hypoplasia. Nat Commun 5:4287CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Burns DT, Donkervoort S, Muller JS, Knierim E, Bharucha-Goebel D, Faqeih EA, Bell SK, AlFaifi AY, Monies D, Millan F, Retterer K, Dyack S, MacKay S, Morales-Gonzalez S, Giunta M, Munro B, Hudson G, Scavina M, Baker L, Massini TC, Lek M, Hu Y, Ezzo D, AlKuraya FS, Kang PB, Griffin H, Foley AR, Schuelke M, Horvath R, Bonnemann CG (2018) Variants in EXOSC9 disrupt the RNA exosome and result in cerebellar atrophy with spinal motor neuronopathy. Am J Hum Genet 102(5):858–873CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Chapman MA, Lawrence MS, Keats JJ, Cibulskis K, Sougnez C, Schinzel AC, Harview CL, Brunet JP, Ahmann GJ, Adli M, Anderson KC, Ardlie KG, Auclair D, Baker A, Bergsagel PL, Bernstein BE, Drier Y, Fonseca R, Gabriel SB, Hofmeister CC, Jagannath S, Jakubowiak AJ, Krishnan A, Levy J, Liefeld T, Lonial S, Mahan S, Mfuko B, Monti S, Perkins LM, Onofrio R, Pugh TJ, Rajkumar SV, Ramos AH, Siegel DS, Sivachenko A, Stewart AK, Trudel S, Vij R, Voet D, Winckler W, Zimmerman T, Carpten J, Trent J, Hahn WC, Garraway LA, Meyerson M, Lander ES, Getz G, Golub TR (2011) Initial genome sequencing and analysis of multiple myeloma. Nature 471(7339):467–472CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Schuller JM, Falk S, Fromm L, Hurt E, Conti E (2018) Structure of the nuclear exosome captured on a maturing preribosome. Science 360(6385):219–222CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Makino DL, Schuch B, Stegmann E, Baumgartner M, Basquin C, Conti E (2015) RNA degradation paths in a 12-subunit nuclear exosome complex. Nature 524(7563):54–58CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Zinder JC, Wasmuth EV, Lima CD (2016) Nuclear RNA exosome at 3.1 A reveals substrate specificities, RNA paths, and allosteric inhibition of Rrp44/Dis3. Mol Cell 64(4):734–745CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Han J, van Hoof A (2016) The RNA exosome channeling and direct access conformations have distinct in vivo functions. Cell Rep 16(12):3348–3358CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Liu JJ, Bratkowski MA, Liu X, Niu CY, Ke A, Wang HW (2014) Visualization of distinct substrate-recruitment pathways in the yeast exosome by EM. Nat Struct Mol Biol 21(1):95–102CrossRefGoogle Scholar
  18. 18.
    Morton DJ, Kuiper EG, Jones SK, Leung SW, Corbett AH, Fasken MB (2018) The RNA exosome and RNA exosome-linked disease. RNA 24(2):127–142CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Mitchell P, Petfalski E, Tollervey D (1996) The 3′ end of yeast 5.8S rRNA is generated by an exonuclease processing mechanism. Genes Dev 10(4):502–513CrossRefGoogle Scholar
  20. 20.
    Andrulis ED, Werner J, Nazarian A, Erdjument-Bromage H, Tempst P, Lis JT (2002) The RNA processing exosome is linked to elongating RNA polymerase II in Drosophila. Nature 420(6917):837–841CrossRefGoogle Scholar
  21. 21.
    Malet H, Topf M, Clare DK, Ebert J, Bonneau F, Basquin J, Drazkowska K, Tomecki R, Dziembowski A, Conti E, Saibil HR, Lorentzen E (2010) RNA channelling by the eukaryotic exosome. EMBO Rep 11(12):936–942CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Lebreton A, Tomecki R, Dziembowski A, Seraphin B (2008) Endonucleolytic RNA cleavage by a eukaryotic exosome. Nature 456(7224):993–996CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Schaeffer D, Tsanova B, Barbas A, Reis FP, Dastidar EG, Sanchez-Rotunno M, Arraiano CM, van Hoof A (2009) The exosome contains domains with specific endoribonuclease, exoribonuclease and cytoplasmic mRNA decay activities. Nat Struct Mol Biol 16(1):56–62CrossRefGoogle Scholar
  24. 24.
    Schneider C, Leung E, Brown J, Tollervey D (2009) The N-terminal PIN domain of the exosome subunit Rrp44 harbors endonuclease activity and tethers Rrp44 to the yeast core exosome. Nucleic Acids Res 37(4):1127–1140CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Wasmuth EV, Januszyk K, Lima CD (2014) Structure of an Rrp6-RNA exosome complex bound to poly(A) RNA. Nature 511(7510):435–439CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kiss DL, Andrulis ED (2010) Genome-wide analysis reveals distinct substrate specificities of Rrp6, Dis3, and core exosome subunits. RNA 16(4):781–791CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Lorentzen E, Dziembowski A, Lindner D, Seraphin B, Conti E (2007) RNA channelling by the archaeal exosome. EMBO Rep 8(5):470–476CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Gerlach P, Schuller JM, Bonneau F, Basquin J, Reichelt P, Falk S, Conti E (2018) Distinct and evolutionary conserved structural features of the human nuclear exosome complex. Elife 7Google Scholar
  29. 29.
    Wasmuth EV, Zinder JC, Zattas D, Das M, Lima CD (2017) Structure and reconstitution of yeast Mpp6-nuclear exosome complexes reveals that Mpp6 stimulates RNA decay and recruits the Mtr4 helicase. Elife 6Google Scholar
  30. 30.
    Falk S, Bonneau F, Ebert J, Kogel A, Conti E (2017) Mpp6 incorporation in the nuclear exosome contributes to RNA channeling through the Mtr4 helicase. Cell Rep 20(10):2279–2286CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Bonneau F, Basquin J, Ebert J, Lorentzen E, Conti E (2009) The yeast exosome functions as a macromolecular cage to channel RNA substrates for degradation. Cell 139(3):547–559CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Schaeffer D, Clark A, Klauer AA, Tsanova B, van Hoof A (2010) Functions of the cytoplasmic exosome. In: Jensen TH (ed) RNA exosome. Landes Bioscience, New YorkGoogle Scholar
  33. 33.
    Butler JS, Mitchell P (2010) Rrp6, Rrp47 and cofactors of the nuclear exosome. Adv Exp Med Biol 702:91–104CrossRefGoogle Scholar
  34. 34.
    Schneider C, Tollervey D (2013) Threading the barrel of the RNA exosome. Trends Biochem Sci 38(10):485–493CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Houseley J, LaCava J, Tollervey D (2006) RNA-quality control by the exosome. Nat Rev Mol Cell Biol 7(7):529–539CrossRefGoogle Scholar
  36. 36.
    Kilchert C, Wittmann S, Vasiljeva L (2016) The regulation and functions of the nuclear RNA exosome complex. Nat Rev Mol Cell Biol 17(4):227–239CrossRefGoogle Scholar
  37. 37.
    Allmang C, Kufel J, Chanfreau G, Mitchell P, Petfalski E, Tollervey D (1999) Functions of the exosome in rRNA, snoRNA and snRNA synthesis. EMBO J 18(19):5399–5410CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    van Hoof A, Lennertz P, Parker R (2000) Yeast exosome mutants accumulate 3′-extended polyadenylated forms of U4 small nuclear RNA and small nucleolar RNAs. Mol Cell Biol 20(2):441–452CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Wyers F, Rougemaille M, Badis G, Rousselle JC, Dufour ME, Boulay J, Regnault B, Devaux F, Namane A, Seraphin B, Libri D, Jacquier A (2005) Cryptic pol II transcripts are degraded by a nuclear quality control pathway involving a new poly(A) polymerase. Cell 121(5):725–737CrossRefGoogle Scholar
  40. 40.
    Preker P, Nielsen J, Kammler S, Lykke-Andersen S, Christensen MS, Mapendano CK, Schierup MH, Jensen TH (2008) RNA exosome depletion reveals transcription upstream of active human promoters. Science 322(5909):1851–1854CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Pefanis E, Wang J, Rothschild G, Lim J, Chao J, Rabadan R, Economides AN, Basu U (2014) Noncoding RNA transcription targets AID to divergently transcribed loci in B cells. Nature 514(7522):389–393CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Gudipati RK, Xu Z, Lebreton A, Seraphin B, Steinmetz LM, Jacquier A, Libri D (2012) Extensive degradation of RNA precursors by the exosome in wild-type cells. Mol Cell 48(3):409–421CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Schneider C, Kudla G, Wlotzka W, Tuck A, Tollervey D (2012) Transcriptome-wide analysis of exosome targets. Mol Cell 48(3):422–433CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Burkard KT, Butler JS (2000) A nuclear 3′-5′ exonuclease involved in mRNA degradation interacts with Poly(A) polymerase and the hnRNA protein Npl3p. Mol Cell Biol 20(2):604–616CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Allmang C, Mitchell P, Petfalski E, Tollervey D (2000) Degradation of ribosomal RNA precursors by the exosome. Nucleic Acids Res 28(8):1684–1691CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Bousquet-Antonelli C, Presutti C, Tollervey D (2000) Identification of a regulated pathway for nuclear pre-mRNA turnover. Cell 102(6):765–775CrossRefGoogle Scholar
  47. 47.
    Hilleren P, McCarthy T, Rosbash M, Parker R, Jensen TH (2001) Quality control of mRNA 3′-end processing is linked to the nuclear exosome. Nature 413(6855):538–542CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Torchet C, Bousquet-Antonelli C, Milligan L, Thompson E, Kufel J, Tollervey D (2002) Processing of 3′-extended read-through transcripts by the exosome can generate functional mRNAs. Mol Cell 9(6):1285–1296CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Kadaba S, Krueger A, Trice T, Krecic AM, Hinnebusch AG, Anderson J (2004) Nuclear surveillance and degradation of hypomodified initiator tRNAMet in S. cerevisiae. Genes Dev 18(11):1227–1240CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Schmidt K, Butler JS (2013) Nuclear RNA surveillance: role of TRAMP in controlling exosome specificity. Wiley Interdiscip Rev RNA 4(2):217–231CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Zinder JC, Lima CD (2017) Targeting RNA for processing or destruction by the eukaryotic RNA exosome and its cofactors. Genes Dev 31(2):88–100CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    LaCava J, Houseley J, Saveanu C, Petfalski E, Thompson E, Jacquier A, Tollervey D (2005) RNA degradation by the exosome is promoted by a nuclear polyadenylation complex. Cell 121(5):713–724CrossRefGoogle Scholar
  53. 53.
    Vanacova S, Wolf J, Martin G, Blank D, Dettwiler S, Friedlein A, Langen H, Keith G, Keller W (2005) A new yeast poly(A) polymerase complex involved in RNA quality control. PLoS Biol 3(6):e189CrossRefGoogle Scholar
  54. 54.
    Lubas M, Christensen MS, Kristiansen MS, Domanski M, Falkenby LG, Lykke-Andersen S, Andersen JS, Dziembowski A, Jensen TH (2011) Interaction profiling identifies the human nuclear exosome targeting complex. Mol Cell 43(4):624–637CrossRefGoogle Scholar
  55. 55.
    Fasken MB, Leung SW, Banerjee A, Kodani MO, Chavez R, Bowman EA, Purohit MK, Rubinson ME, Rubinson EH, Corbett AH (2011) Air1 zinc knuckles 4 and 5 and a conserved IWRXY motif are critical for the function and integrity of the Trf4/5-Air1/2-Mtr4 polyadenylation (TRAMP) RNA quality control complex. J Biol Chem 286(43):37429–37445CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Milligan L, Decourty L, Saveanu C, Rappsilber J, Ceulemans H, Jacquier A, Tollervey D (2008) A yeast exosome cofactor, Mpp6, functions in RNA surveillance and in the degradation of noncoding RNA transcripts. Mol Cell Biol 28(17):5446–5457CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Mitchell P, Petfalski E, Houalla R, Podtelejnikov A, Mann M, Tollervey D (2003) Rrp47p is an exosome-associated protein required for the 3′ processing of stable RNAs. Mol Cell Biol 23(19):6982–6992CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Schilders G, van Dijk E, Pruijn GJ (2007) C1D and hMtr4p associate with the human exosome subunit PM/Scl-100 and are involved in pre-rRNA processing. Nucleic Acids Res 35(8):2564–2572CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Vasiljeva L, Buratowski S (2006) Nrd1 interacts with the nuclear exosome for 3' processing of RNA polymerase II transcripts. Mol Cell 21(2):239–248CrossRefGoogle Scholar
  60. 60.
    Richard P, Feng S, Manley JL (2013) A SUMO-dependent interaction between Senataxin and the exosome, disrupted in the neurodegenerative disease AOA2, targets the exosome to sites of transcription-induced DNA damage. Genes Dev 27(20):2227–2232CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Anderson JS, Parker RP (1998) The 3′ to 5′ degradation of yeast mRNAs is a general mechanism for mRNA turnover that requires the SKI2 DEVH box protein and 3′ to 5′ exonucleases of the exosome complex. EMBO J 17(5):1497–1506CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    van Hoof A, Staples RR, Baker RE, Parker R (2000) Function of the ski4p (Csl4p) and Ski7p proteins in 3′-to-5′ degradation of mRNA. Mol Cell Biol 20(21):8230–8243CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Kowalinski E, Kogel A, Ebert J, Reichelt P, Stegmann E, Habermann B, Conti E (2016) Structure of a cytoplasmic 11-subunit RNA exosome complex. Mol Cell 63(1):125–134CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Johnson SJ, Jackson RN (2013) Ski2-like RNA helicase structures: common themes and complex assemblies. RNA Biol 10(1):33–43CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Giunta M, Edvardson S, Xu Y, Schuelke M, Gomez-Duran A, Boczonadi V, Elpeleg O, Muller JS, Horvath R (2016) Altered RNA metabolism due to a homozygous RBM7 mutation in a patient with spinal motor neuropathy. Hum Mol Genet 25(14):2985–2996PubMedPubMedCentralGoogle Scholar
  66. 66.
    Fabre A, Charroux B, Martinez-Vinson C, Roquelaure B, Odul E, Sayar E, Smith H, Colomb V, Andre N, Hugot JP, Goulet O, Lacoste C, Sarles J, Royet J, Levy N, Badens C (2012) SKIV2L mutations cause syndromic diarrhea, or trichohepatoenteric syndrome. Am J Hum Genet 90(4):689–692CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Hartley JL, Zachos NC, Dawood B, Donowitz M, Forman J, Pollitt RJ, Morgan NV, Tee L, Gissen P, Kahr WH, Knisely AS, Watson S, Chitayat D, Booth IW, Protheroe S, Murphy S, de Vries E, Kelly DA, Maher ER (2010) Mutations in TTC37 cause trichohepatoenteric syndrome (phenotypic diarrhea of infancy). Gastroenterology 138(7):2388–2398, 2398 e2381-2382CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Briggs MW, Burkard KT, Butler JS (1998) Rrp6p, the yeast homologue of the human PM-Scl 100-kDa autoantigen, is essential for efficient 5.8 S rRNA 3′ end formation. J Biol Chem 273(21):13255–13263CrossRefGoogle Scholar
  69. 69.
    Kinoshita N, Goebl M, Yanagida M (1991) The fission yeast dis3+ gene encodes a 110-kDa essential protein implicated in mitotic control. Mol Cell Biol 11(12):5839–5847CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Kim DU, Hayles J, Kim D, Wood V, Park HO, Won M, Yoo HS, Duhig T, Nam M, Palmer G, Han S, Jeffery L, Baek ST, Lee H, Shim YS, Lee M, Kim L, Heo KS, Noh EJ, Lee AR, Jang YJ, Chung KS, Choi SJ, Park JY, Park Y, Kim HM, Park SK, Park HJ, Kang EJ, Kim HB, Kang HS, Park HM, Kim K, Song K, Song KB, Nurse P, Hoe KL (2010) Analysis of a genome-wide set of gene deletions in the fission yeast Schizosaccharomyces pombe. Nat Biotechnol 28(6):617–623CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Hou D, Ruiz M, Andrulis ED (2012) The ribonuclease Dis3 is an essential regulator of the developmental transcriptome. BMC Genomics 13:359CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Lim SJ, Boyle PJ, Chinen M, Dale RK, Lei EP (2013) Genome-wide localization of exosome components to active promoters and chromatin insulators in Drosophila. Nucleic Acids Res 41(5):2963–2980CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Rudnik-Schöneborn S, Senderek J, Jen JC, Houge G, Seeman P, Puchmajerova A, Graul-Neumann L, Seidel U, Korinthenberg R, Kirschner J, Seeger J, Ryan MM, Muntoni F, Steinlin M, Sztriha L, Colomer J, Hubner C, Brockmann K, Van Maldergem L, Schiff M, Holzinger A, Barth P, Reardon W, Yourshaw M, Nelson SF, Eggermann T, Zerres K (2013) Pontocerebellar hypoplasia type 1: clinical spectrum and relevance of EXOSC3 mutations. Neurology 80(5):438–446CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Eggens VR, Barth PG, Niermeijer JM, Berg JN, Darin N, Dixit A, Fluss J, Foulds N, Fowler D, Hortobagyi T, Jacques T, King MD, Makrythanasis P, Mate A, Nicoll JA, O'Rourke D, Price S, Williams AN, Wilson L, Suri M, Sztriha L, Dijns-de Wissel MB, van Meegen MT, van Ruissen F, Aronica E, Troost D, Majoie CB, Marquering HA, Poll-The BT, Baas F (2014) EXOSC3 mutations in pontocerebellar hypoplasia type 1: novel mutations and genotype-phenotype correlations. Orphanet J Rare Dis 9(1):23CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Lohr JG, Stojanov P, Carter SL, Cruz-Gordillo P, Lawrence MS, Auclair D, Sougnez C, Knoechel B, Gould J, Saksena G, Cibulskis K, McKenna A, Chapman MA, Straussman R, Levy J, Perkins LM, Keats JJ, Schumacher SE, Rosenberg M, Multiple Myeloma Research Consortium, Getz G, Golub TR (2014) Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy. Cancer Cell 25(1):91–101PubMedPubMedCentralGoogle Scholar
  76. 76.
    Weissbach S, Langer C, Puppe B, Nedeva T, Bach E, Kull M, Bargou R, Einsele H, Rosenwald A, Knop S, Leich E (2015) The molecular spectrum and clinical impact of DIS3 mutations in multiple myeloma. Br J Haematol 169(1):57–70CrossRefGoogle Scholar
  77. 77.
    Walker BA, Boyle EM, Wardell CP, Murison A, Begum DB, Dahir NM, Proszek PZ, Johnson DC, Kaiser MF, Melchor L, Aronson LI, Scales M, Pawlyn C, Mirabella F, Jones JR, Brioli A, Mikulasova A, Cairns DA, Gregory WM, Quartilho A, Drayson MT, Russell N, Cook G, Jackson GH, Leleu X, Davies FE, Morgan GJ (2015) Mutational spectrum, copy number changes, and outcome: results of a sequencing study of patients with newly diagnosed myeloma. J Clin Oncol 33(33):3911–3920CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Lionetti M, Barbieri M, Todoerti K, Agnelli L, Fabris S, Tonon G, Segalla S, Cifola I, Pinatel E, Tassone P, Musto P, Baldini L, Neri A (2015) A compendium of DIS3 mutations and associated transcriptional signatures in plasma cell dyscrasias. Oncotarget 6(28):26129–26141CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Zanni G, Scotton C, Passarelli C, Fang M, Barresi S, Dallapiccola B, Wu B, Gualandi F, Ferlini A, Bertini E, Wei W (2013) Exome sequencing in a family with intellectual disability, early onset spasticity, and cerebellar atrophy detects a novel mutation in EXOSC3. Neurogenetics 14(3-4):247–250CrossRefGoogle Scholar
  80. 80.
    Halevy A, Lerer I, Cohen R, Kornreich L, Shuper A, Gamliel M, Zimerman BE, Korabi I, Meiner V, Straussberg R, Lossos A (2014) Novel EXOSC3 mutation causes complicated hereditary spastic paraplegia. J Neurol 261(11):2165–2169CrossRefGoogle Scholar
  81. 81.
    Oddone A, Lorentzen E, Basquin J, Gasch A, Rybin V, Conti E, Sattler M (2007) Structural and biochemical characterization of the yeast exosome component Rrp40. EMBO Rep 8(1):63–69CrossRefGoogle Scholar
  82. 82.
    Walker BA, Wardell CP, Melchor L, Hulkki S, Potter NE, Johnson DC, Fenwick K, Kozarewa I, Gonzalez D, Lord CJ, Ashworth A, Davies FE, Morgan GJ (2012) Intraclonal heterogeneity and distinct molecular mechanisms characterize the development of t(4;14) and t(11;14) myeloma. Blood 120(5):1077–1086CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Bolli N, Avet-Loiseau H, Wedge DC, Van Loo P, Alexandrov LB, Martincorena I, Dawson KJ, Iorio F, Nik-Zainal S, Bignell GR, Hinton JW, Li Y, Tubio JM, McLaren S, S OM, Butler AP, Teague JW, Mudie L, Anderson E, Rashid N, Tai YT, Shammas MA, Sperling AS, Fulciniti M, Richardson PG, Parmigiani G, Magrangeas F, Minvielle S, Moreau P, Attal M, Facon T, Futreal PA, Anderson KC, Campbell PJ, Munshi NC (2014) Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nat Commun 5:2997CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Leich E, Weissbach S, Klein HU, Grieb T, Pischimarov J, Stuhmer T, Chatterjee M, Steinbrunn T, Langer C, Eilers M, Knop S, Einsele H, Bargou R, Rosenwald A (2013) Multiple myeloma is affected by multiple and heterogeneous somatic mutations in adhesion- and receptor tyrosine kinase signaling molecules. Blood Cancer J 3:e102CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Melchor L, Brioli A, Wardell CP, Murison A, Potter NE, Kaiser MF, Fryer RA, Johnson DC, Begum DB, Hulkki Wilson S, Vijayaraghavan G, Titley I, Cavo M, Davies FE, Walker BA, Morgan GJ (2014) Single-cell genetic analysis reveals the composition of initiating clones and phylogenetic patterns of branching and parallel evolution in myeloma. Leukemia 28(8):1705–1715CrossRefGoogle Scholar
  86. 86.
    Kortum KM, Langer C, Monge J, Bruins L, Zhu YX, Shi CX, Jedlowski P, Egan JB, Ojha J, Bullinger L, Kull M, Ahmann G, Rasche L, Knop S, Fonseca R, Einsele H, Stewart AK, Braggio E (2015) Longitudinal analysis of 25 sequential sample-pairs using a custom multiple myeloma mutation sequencing panel (M(3)P). Ann Hematol 94(7):1205–1211CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Ryu D, Kim HJ, Joung JG, Lee HO, Bae JS, Kim SJ, Kim H, Park WY, Kim K (2016) Comprehensive genomic profiling of IgM multiple myeloma identifies IRF4 as a prognostic marker. Oncotarget 7(30):47127–47133CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    White BS, Lanc I, O'Neal J, Gupta H, Fulton RS, Schmidt H, Fronick C, Belter EA Jr, Fiala M, King J, Ahmann GJ, DeRome M, Mardis ER, Vij R, DiPersio JF, Levy J, Auclair D, Tomasson MH (2018) A multiple myeloma-specific capture sequencing platform discovers novel translocations and frequent, risk-associated point mutations in IGLL5. Blood Cancer J 8(3):35CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Ryland GL, Jones K, Chin M, Markham J, Aydogan E, Kankanige Y, Caruso M, Guinto J, Dickinson M, Prince HM, Yong K, Blombery P (2018) Novel genomic findings in multiple myeloma identified through routine diagnostic sequencing. J Clin Pathol 71(10):895–899CrossRefGoogle Scholar
  90. 90.
    Apps R, Garwicz M (2005) Anatomical and physiological foundations of cerebellar information processing. Nat Rev Neurosci 6(4):297–311CrossRefGoogle Scholar
  91. 91.
    Biancheri R, Cassandrini D, Pinto F, Trovato R, Di Rocco M, Mirabelli-Badenier M, Pedemonte M, Panicucci C, Trucks H, Sander T, Zara F, Rossi A, Striano P, Minetti C, Santorelli FM (2013) EXOSC3 mutations in isolated cerebellar hypoplasia and spinal anterior horn involvement. J Neurol 260(7):1866–1870CrossRefGoogle Scholar
  92. 92.
    Schwabova J, Brozkova DS, Petrak B, Mojzisova M, Pavlickova K, Haberlova J, Mrazkova L, Hedvicakova P, Hornofova L, Kaluzova M, Fencl F, Krutova M, Zamecnik J, Seeman P (2013) Homozygous EXOSC3 mutation c.92G→C, p.G31A is a founder mutation causing severe pontocerebellar hypoplasia type 1 among the Czech Roma. J Neurogenet 27(4):163–169CrossRefGoogle Scholar
  93. 93.
    Di Giovambattista AP, Jacome Querejeta I, Ventura Faci P, Rodriguez Martinez G, Ramos Fuentes F (2017) [Familial EXOSC3-related pontocerebellar hypoplasia]. An Pediatr (Barc) 86(5):284–286Google Scholar
  94. 94.
    Schottmann G, Picker-Minh S, Schwarz JM, Gill E, Rodenburg RJT, Stenzel W, Kaindl AM, Schuelke M (2017) Recessive mutation in EXOSC3 associates with mitochondrial dysfunction and pontocerebellar hypoplasia. Mitochondrion 37:46–54CrossRefGoogle Scholar
  95. 95.
    Fasken MB, Losh JS, Leung SW, Brutus S, Avin B, Vaught JC, Potter-Birriel J, Craig T, Conn GL, Mills-Lujan K, Corbett AH, van Hoof A (2017) Insight into the RNA exosome complex through modeling pontocerebellar hypoplasia type 1b disease mutations in yeast. Genetics 205(1):221–237CrossRefGoogle Scholar
  96. 96.
    Gillespie A, Gabunilas J, Jen JC, Chanfreau GF (2017) Mutations of EXOSC3/Rrp40p associated with neurological diseases impact ribosomal RNA processing functions of the exosome in S. cerevisiae. RNA 23(4):466–472CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Mukherjee D, Gao M, O’Connor JP, Raijmakers R, Pruijn G, Lutz CS, Wilusz J (2002) The mammalian exosome mediates the efficient degradation of mRNAs that contain AU-rich elements. EMBO J 21(1-2):165–174CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Laubach J, Richardson P, Anderson K (2011) Multiple myeloma. Annu Rev Med 62:249–264CrossRefGoogle Scholar
  99. 99.
    Kumar SK, Rajkumar V, Kyle RA, van Duin M, Sonneveld P, Mateos MV, Gay F, Anderson KC (2017) Multiple myeloma. Nat Rev Dis Primers 3:17046CrossRefGoogle Scholar
  100. 100.
    Siegel RL, Miller KD, Jemal A (2018) Cancer statistics, 2018. CA Cancer J Clin 68(1):7–30CrossRefGoogle Scholar
  101. 101.
    Reis FP, Pobre V, Silva IJ, Malecki M, Arraiano CM (2013) The RNase II/RNB family of exoribonucleases: putting the ‘Dis’ in disease. Wiley Interdiscip Rev RNA 4(5):607–615CrossRefGoogle Scholar
  102. 102.
    Robinson SR, Oliver AW, Chevassut TJ, Newbury SF (2015) The 3′ to 5′ exoribonuclease DIS3: from structure and mechanisms to biological functions and role in human disease. Biomolecules 5(3):1515–1539CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Tomecki R, Drazkowska K, Kucinski I, Stodus K, Szczesny RJ, Gruchota J, Owczarek EP, Kalisiak K, Dziembowski A (2014) Multiple myeloma-associated hDIS3 mutations cause perturbations in cellular RNA metabolism and suggest hDIS3 PIN domain as a potential drug target. Nucleic Acids Res 42(2):1270–1290CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Frazao C, McVey CE, Amblar M, Barbas A, Vonrhein C, Arraiano CM, Carrondo MA (2006) Unravelling the dynamics of RNA degradation by ribonuclease II and its RNA-bound complex. Nature 443(7107):110–114CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Snee MJ, Wilson WC, Zhu Y, Chen SY, Wilson BA, Kseib C, O'Neal J, Mahajan N, Tomasson MH, Arur S, Skeath JB (2016) Collaborative control of cell cycle progression by the RNA exonuclease Dis3 and Ras is conserved across species. Genetics 203(2):749–762CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Smith SB, Kiss DL, Turk E, Tartakoff AM, Andrulis ED (2011) Pronounced and extensive microtubule defects in a Saccharomyces cerevisiae DIS3 mutant. Yeast 28(11):755–769CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Murakami H, Goto DB, Toda T, Chen ES, Grewal SI, Martienssen RA, Yanagida M (2007) Ribonuclease activity of Dis3 is required for mitotic progression and provides a possible link between heterochromatin and kinetochore function. PLoS One 2(3):e317CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Segalla S, Pivetti S, Todoerti K, Chudzik MA, Giuliani EC, Lazzaro F, Volta V, Lazarevic D, Musco G, Muzi-Falconi M, Neri A, Biffo S, Tonon G (2015) The ribonuclease DIS3 promotes let-7 miRNA maturation by degrading the pluripotency factor LIN28B mRNA. Nucleic Acids Res 43(10):5182–5193CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Basu U, Meng FL, Keim C, Grinstein V, Pefanis E, Eccleston J, Zhang T, Myers D, Wasserman CR, Wesemann DR, Januszyk K, Gregory RI, Deng H, Lima CD, Alt FW (2011) The RNA exosome targets the AID cytidine deaminase to both strands of transcribed duplex DNA substrates. Cell 144(3):353–363CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson A, Kampf C, Sjostedt E, Asplund A, Olsson I, Edlund K, Lundberg E, Navani S, Szigyarto CA, Odeberg J, Djureinovic D, Takanen JO, Hober S, Alm T, Edqvist PH, Berling H, Tegel H, Mulder J, Rockberg J, Nilsson P, Schwenk JM, Hamsten M, von Feilitzen K, Forsberg M, Persson L, Johansson F, Zwahlen M, von Heijne G, Nielsen J, Ponten F (2015) Proteomics. Tissue-based map of the human proteome. Science 347(6220):1260419CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Budde BS, Namavar Y, Barth PG, Poll-The BT, Nurnberg G, Becker C, van Ruissen F, Weterman MA, Fluiter K, te Beek ET, Aronica E, van der Knaap MS, Hohne W, Toliat MR, Crow YJ, Steinling M, Voit T, Roelenso F, Brussel W, Brockmann K, Kyllerman M, Boltshauser E, Hammersen G, Willemsen M, Basel-Vanagaite L, Krageloh-Mann I, de Vries LS, Sztriha L, Muntoni F, Ferrie CD, Battini R, Hennekam RC, Grillo E, Beemer FA, Stoets LM, Wollnik B, Nurnberg P, Baas F (2008) tRNA splicing endonuclease mutations cause pontocerebellar hypoplasia. Nat Genet 40(9):1113–1118CrossRefGoogle Scholar
  112. 112.
    Edvardson S, Shaag A, Kolesnikova O, Gomori JM, Tarassov I, Einbinder T, Saada A, Elpeleg O (2007) Deleterious mutation in the mitochondrial arginyl-transfer RNA synthetase gene is associated with pontocerebellar hypoplasia. Am J Hum Genet 81(4):857–862CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Agamy O, Ben Zeev B, Lev D, Marcus B, Fine D, Su D, Narkis G, Ofir R, Hoffmann C, Leshinsky-Silver E, Flusser H, Sivan S, Soll D, Lerman-Sagie T, Birk OS (2010) Mutations disrupting selenocysteine formation cause progressive cerebello-cerebral atrophy. Am J Hum Genet 87(4):538–544CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Karaca E, Weitzer S, Pehlivan D, Shiraishi H, Gogakos T, Hanada T, Jhangiani SN, Wiszniewski W, Withers M, Campbell IM, Erdin S, Isikay S, Franco LM, Gonzaga-Jauregui C, Gambin T, Gelowani V, Hunter JV, Yesil G, Koparir E, Yilmaz S, Brown M, Briskin D, Hafner M, Morozov P, Farazi TA, Bernreuther C, Glatzel M, Trattnig S, Friske J, Kronnerwetter C, Bainbridge MN, Gezdirici A, Seven M, Muzny DM, Boerwinkle E, Ozen M, Baylor Hopkins Center for Mendelian Genomics, Clausen T, Tuschl T, Yuksel A, Hess A, Gibbs RA, Martinez J, Penninger JM, Lupski JR (2014) Human CLP1 mutations alter tRNA biogenesis, affecting both peripheral and central nervous system function. Cell 157(3):636–650CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Schaffer AE, Eggens VR, Caglayan AO, Reuter MS, Scott E, Coufal NG, Silhavy JL, Xue Y, Kayserili H, Yasuno K, Rosti RO, Abdellateef M, Caglar C, Kasher PR, Cazemier JL, Weterman MA, Cantagrel V, Cai N, Zweier C, Altunoglu U, Satkin NB, Aktar F, Tuysuz B, Yalcinkaya C, Caksen H, Bilguvar K, Fu XD, Trotta CR, Gabriel S, Reis A, Gunel M, Baas F, Gleeson JG (2014) CLP1 founder mutation links tRNA splicing and maturation to cerebellar development and neurodegeneration. Cell 157(3):651–663CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Vithana EN, Abu-Safieh L, Allen MJ, Carey A, Papaioannou M, Chakarova C, Al-Maghtheh M, Ebenezer ND, Willis C, Moore AT, Bird AC, Hunt DM, Bhattacharya SS (2001) A human homolog of yeast pre-mRNA splicing gene, PRP31, underlies autosomal dominant retinitis pigmentosa on chromosome 19q13.4 (RP11). Mol Cell 8(2):375–381CrossRefGoogle Scholar
  117. 117.
    Linder B, Fischer U, Gehring NH (2015) mRNA metabolism and neuronal disease. FEBS Lett 589(14):1598–1606CrossRefGoogle Scholar
  118. 118.
    Schuch B, Feigenbutz M, Makino DL, Falk S, Basquin C, Mitchell P, Conti E (2014) The exosome-binding factors Rrp6 and Rrp47 form a composite surface for recruiting the Mtr4 helicase. EMBO J 33(23):2829–2846CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Shi Y, Pellarin R, Fridy PC, Fernandez-Martinez J, Thompson MK, Li Y, Wang QJ, Sali A, Rout MP, Chait BT (2015) A strategy for dissecting the architectures of native macromolecular assemblies. Nat Methods 12(12):1135–1138CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Araki Y, Takahashi S, Kobayashi T, Kajiho H, Hoshino S, Katada T (2001) Ski7p G protein interacts with the exosome and the Ski complex for 3′-to-5′ mRNA decay in yeast. EMBO J 20(17):4684–4693CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Wang L, Lewis MS, Johnson AW (2005) Domain interactions within the Ski2/3/8 complex and between the Ski complex and Ski7p. RNA 11(8):1291–1302CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Milo B. Fasken
    • 1
    Email author
  • Derrick J. Morton
    • 1
  • Emily G. Kuiper
    • 2
  • Stephanie K. Jones
    • 1
    • 3
  • Sara W. Leung
    • 1
  • Anita H. Corbett
    • 1
    Email author
  1. 1.Department of Biology, RRC 1021Emory UniversityAtlantaUSA
  2. 2.Department of Cancer Immunology and VirologyDana-Farber Cancer InstituteBostonUSA
  3. 3.Genetics and Molecular Biology Graduate ProgramEmory UniversityAtlantaUSA

Personalised recommendations