Advertisement

How to Perform an Accurate Analysis of Metaphase I Chromosome Configurations in Autopolyploids of Arabidopsis thaliana

  • Pablo Parra-Nunez
  • Mónica Pradillo
  • Juan Luis SantosEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2061)

Abstract

During meiosis, accurate segregation of chromosomes requires the formation of bivalents at metaphase I. In autopolyploids, there are more than two copies of each chromosome with the same chance to form chiasmata at meiosis. This leads to the formation of multivalent configurations in which chiasma quantification is rather complicated. Here, we present an improved cytological protocol, including fluorescence in situ hybridization, to obtain high quality spreads of metaphase I chromosomes from Arabidopsis thaliana autotetraploids. This method allows an accurate analysis of the different meiotic configurations and enables the assessment of the number of chiasmata formed by each tetrasome (group of four homologs).

Key words

Arabidopsis Chiasma FISH Meiosis Polyploidy 

Notes

Acknowledgments

The authors acknowledge the support of the European Union by the advanced grant Marie Curie Initial Training Network (ITN) “COMREC” (Grant agreement number: 606956). This work has also been partially supported by a grant from the Ministerio de Economía y Competitividad of Spain (AGL2015-67349-P).

References

  1. 1.
    Masterson J (1994) Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. Science 264:421–424.  https://doi.org/10.1126/science.264.5157.421CrossRefPubMedGoogle Scholar
  2. 2.
    Pozo JC, Ramirez-Parra E (2014) Deciphering the molecular bases for drought tolerance in Arabidopsis autotetraploids. Plant Cell Environ 37:2722–2737.  https://doi.org/10.1111/pce.12344CrossRefPubMedGoogle Scholar
  3. 3.
    Chao DY, Dilkes B, Luo H et al (2013) Polyploids exhibit higher potassium uptake and salinity tolerance in Arabidopsis. Science 341:658–659.  https://doi.org/10.1126/science.1240561CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Comai L (2005) The advantages and disadvantages of being polyploid. Nat Rev Genet 6:836–846.  https://doi.org/10.1038/nrg1711CrossRefGoogle Scholar
  5. 5.
    Sybenga J (1975) Meiotic configurations: a source of information for estimating genetic parameters. Springer, BerlinCrossRefGoogle Scholar
  6. 6.
    Santos JL, Alfaro D, Sanchez-Moran E et al (2003) Partial Diploidization of meiosis in Autotetraploid Arabidopsis thaliana. Genetics 165:1533–1540PubMedPubMedCentralGoogle Scholar
  7. 7.
    Laibach F (1907) Zur Frage nach der Individualität der Chromosomen im Pflanzenreich. Beih Bot Centralbl 22:191–210Google Scholar
  8. 8.
    Steinitz-Sears LM (1963) Chromosome studies in Arabidopsis thaliana. Genetics 48:483–490PubMedPubMedCentralGoogle Scholar
  9. 9.
    Fransz P, Armstrong S, Alonso-Blanco C et al (1998) Cytogenetics for the model system Arabidopsis thaliana. Plant J 13:867–876.  https://doi.org/10.1046/j.1365-313X.1998.00086.xCrossRefPubMedGoogle Scholar
  10. 10.
    Sanchez Moran E, Armstrong SJ, Santos JL et al (2001) Chiasma formation in Arabidopsis thaliana accession Wassileskija and in two meiotic mutants. Chromosom Res 9:121–128.  https://doi.org/10.1023/A:1009278902994CrossRefGoogle Scholar
  11. 11.
    Sanchez-Moran E, Armstrong SJ, Santos JL et al (2002) Variation in chiasma frequency among eight accessions of Arabidopsis thaliana. Genetics 162:1415–1422PubMedPubMedCentralGoogle Scholar
  12. 12.
    López E, Pradillo M, Oliver C et al (2012) Looking for natural variation in chiasma frequency in Arabidopsis thaliana. J Exp Bot 63:887–894.  https://doi.org/10.1093/jxb/err319CrossRefPubMedGoogle Scholar
  13. 13.
    Koorneef M, Fransz P, de Jong H (2003) Cytogenetic tools for Arabidopsis thaliana. Chromosom Res 11:183–194CrossRefGoogle Scholar
  14. 14.
    Bouharmont J, Van De Hende J (1968) Inheritance of lethal chlorophyll mutants in tetraploid Arabidopsis thaliana. Arabidopsis Inform Serv 5:25–26Google Scholar
  15. 15.
    Bouharmont J (1969) Evolution of chromosome numbers in Arabidopsis polyploids. Chromosomes Today 2:197–201Google Scholar
  16. 16.
    Morris PC, Altmann T (1994) Tissue culture and transformation. In: Meyerowitz EM, Somerville CR (eds) Cold Spring Harbor laboratory press. Cold Spring Harbor, New YorkGoogle Scholar
  17. 17.
    Heslop-Harrison JS, Maluszynska J (1994) The molecular cytogenetics of Arabidopsis. In: Meyerowitz EM, Sommerville CR (eds) Cold Spring Harbor laboratory press. Cold Spring Harbor, New YorkGoogle Scholar
  18. 18.
    Weiss H, Maluszynska J (2000) Chromosomal rearrangement in autotetraploid plants of Arabidopsis thaliana. Hereditas 133:255–261.  https://doi.org/10.1111/j.1601-5223.2000.00255.xCrossRefPubMedGoogle Scholar
  19. 19.
    Gerlach WL, Bedbrook JR (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res 7:1869–1885.  https://doi.org/10.1093/nar/7.7.1869CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Campell BR, Song Y, Posch TE et al (1992) Sequence and organization of 5S ribosomal RNA-encoding genes of Arabidopsis thaliana. Gene 112:225–228.  https://doi.org/10.1016/0378-1119(92)90380-8CrossRefPubMedGoogle Scholar
  21. 21.
    Yu Z, Haage K, Streit VE et al (2009) A large number of tetraploid Arabidopsis thaliana lines, generated by a rapid strategy, reveal high stability of neo-tetraploids during consecutive generations. Theor Appl Genet 118:1107–1119.  https://doi.org/10.1007/s00122-009-0966-9CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Pablo Parra-Nunez
    • 1
  • Mónica Pradillo
    • 1
  • Juan Luis Santos
    • 1
    Email author
  1. 1.Departamento de Genética, Fisiología y Microbiología, Facultad de BiologíaUniversidad Complutense de MadridMadridSpain

Personalised recommendations